
OffsiderAPI-0.9.1

1

API reference for Offsider-0.9.1

The framework

overview
The Offsider framework is implemented as a collection of executables, which together provide a
novel and powerful paradigm for building systems, from simple to extremely complex.

The framework allows the programmer to build systems which respond as though they were objects.
Such a system is called an offsider. In fact, an offsider is an object, and you interact with it by sending
it messages.

The framework contains a single high-level executable, offsider, which provides the mechanism for
sending messages to offsiders. (It can even send a message without an offsider being there to receive
the message. This is how offsiders are created in the first place.)

By default, a newly created offsider will respond to a large number of methods. These are all of the
methods that are provided by the framework itself. It is these methods that are documented below.

Once an offsider has been created, the programmer is free to override the methods that it responds to,
or create new methods, without modifying any of the methods provided by the framework.

To understand the offsider framework, you need to understand the following concepts:

The base directory
Each offsider is fully contained within a single directory within the file system. This directory is known
as the base directory. This directory specifies the offsider completely and uniquely. Without it, the
framework does not know where to send the message.

The infrastructure of an offsider
When we talk of an offsider's infrastructure, we are simply referring to the contents of the base directory.
The infrastructure completely determines the functionality, and the state, of that offsider. (Ignoring, of
course, the default functionality provided by the framework).

A named executable
A named executable is a convenience provided for the programmer. It is just a wrapper for the
offsider executable. It simplifies the task of sending a message to a particular offsider by providing
a unique executable that will send messages to that offsider, and no other.

For example, if we have an offsider with a base directory /path/to/Foo, and it has a named
executable ~/bin/foo, then the following are equivalent:

offsider -b /path/to/Foo message

OffsiderAPI-0.9.1

2
foo message

The named executable is easier to type, and easier to remember.

Normally the named executable is specified and created at the same time that the offsider is created.

For example:

offsider create foo /path/to/Foo

Once you have a named executable, you don't ever have to know or care where the base directory is. A
common way to create a new offsider is to specify only the named executable, and let the framework
come up with the base directory:

offsider create foo

Next, we describe the executable offsider, and its alias this.

offsider
offsider will send a message to an offsider.

The syntax is:

offsider [-b baseDirectory] [message]

where

baseDirectory is the base directory of the offsider to receive the message.

If the baseDirectory is not specified, then offsider will look to see if the environment variable
$BASEDIRECTORY has been set. If it has, then it will get the base directory from there.

If no base directory is specified at all (using either of these methods), then the message will still be
sent, but it will have no target. Whether this results in an error is completely up to the method being
envoked. For example, the method create does not require an offsider to receive the message, and
will not generate an error. Many other methods do require an offsider to receive the message, and will
generate an error.

offsider also has some debugging modes that allow you to see what methods are being called, and
also to profile the execution to see where the time is being spent. Refer to the man page for more detail
(man offsider).

this
this is just an alternative name for offsider. Nothing in the framework distinguishes between these
two names. It is just that this makes more sense when used within a method definition.

Typical usage is:

this message

which is equivalent to:

offsider -b $BASEDIRECTORY message

provided $BASEDIRECTORY is set. Within a method definition, it is always safe to assume that
$BASEDIRECTORY is set, since the framework ensures that this has been done.

OffsiderAPI-0.9.1

3
Usage

This API documentation documents methods. The method is invoked by sending a message to an
offsider.

For illustration purposes, suppose we have an offsider with base directory /path/to/Foo, and named
executable foo. We want to envoke a method baz with arguments a b c.

The message to be sent to the offsider is:

baz a b c

From the command line, we can send the message using:

offsider -b /path/to/Foo baz a b c

or

foo baz a b c

From within a method envoked on this offsider, we can use:

this baz a b c

In the documentation that follows, we would document the syntax for this method as follows:

syntax:

baz arguments

Is an offsider passive or active?
Throughout this documentation, I will talk about offsiders as though they were dynamic, active entities.
So, for example I will say things like you send a message to an offsider and the offsider responds to
the message.

This is an easy way to conceptualise what is happening at the high level, but it is really a false picture
of what is happening behind the scenes.

In fact, the offsider is a purely passive thing. It is nothing more than a repository for data and executable
code. The active component is actually the offsider framework, and in particular the offsider
executable.

The offsider executable is what takes the message, parses it and takes appropriate action. It does
this on behalf of the offsider, by referring to the offsider, by taking note of what executables and data
are contained within the offsider. It delegates as appropriate to executables that implement the required
functionality (methods) on behalf of the offsider.

Keep this in mind as you read through the documentation.

Some wrappers that you might find useful:

here

here will send a message to the current working directory, as though it were an offsider.

Syntax:

OffsiderAPI-0.9.1

4
here message

If the current working directory contains a subdirectory Here/, the message will be sent to that directory
instead.

my

my will send a message to the user's home directory, as though it were an offsider.

Syntax:

my message

If the user's home directory contains a subdirectory My/, the message will be sent to that directory
instead.

Types in the Offsider framework
Types were introduced in version 0.9.0 . Before that, the various types (keys, methods, attachments
etc) were handled each in their own particular way by methods written specifically for that type.

The types framework is a set of methods that can be used with any type, including types created by
the user.

The advantages of this new approach is that we now have a consistent generic API that works exactly
the same across all types. In addition, the user can easily add new types as required.

In addition, a couple of wrapper methods (in and to), plus a new set of syntactic sugar, provides
different ways of coding the actions on type members. This means you can choose the syntax that seems
most intuitive and readable for any given context.

Concepts

type
A type is a collection of data or executables stored within the offsider infrastructure. Each type is a
separate collection.

Implementation detail: The type is implemented as a subdirectory of the offsider's base directory. The
Type framework also provides mechanisms for placing directories and offsiders into such a collection,
so the Type framework is in effect just an abstraction of normal file and directory operations.

Note especially that, unlike most application programming languages, the types are specific to each
offsider. They are not defined at the framework level. (Although there are conventions that are used by
the default framework. In particular methods and to a lesser extent keys play an important role in
the logic of the Offsider framework.)

full type name
The full name of the type is the name of the directory that holds the collection.

For example keys is the full name of the directory that holds all the offsider's keys.

abbreviated type name

OffsiderAPI-0.9.1

5
You can often refer to a collection by providing an abbreviated name, for example key and k can
usually be used as names for the type with full name keys.

The name can be used provided it provides no ambiguity. In otherwords if you have types foobah
and foozball, then foob is valid for foobah and fooz is valid for foozball, but foo is not
valid as a type name.

member
A type is a collection, a member is an element of such a collection.

A member can be ordinary data, an executable, or another collection, such as a directory or an offsider.

Implementation detail: The type is implemented as a directory, and each member is just a file or directory
in that directory.

action
An action is something that is done to a member. For example get the value, or rename it.

Differences with earlier versions. Pitfalls

Deprecated methods
All of the existing methods (eg getKey, pipeToAttachment, methods) are still available, but
they are deprecated. They will almost certainly not be available in version 1.0.

New syntactic sugar
Some methods are now replaced by an equivalent form of syntactic sugar. For example, the message
keys used to be implemented as a method. The same message is now handled by syntactic sugar, which
converts the message to listType keys. The end result is the same.

The need to create types explicitly
Previously, methods like attachment, addChildDictionary and so on, would automatically
create the appropriate subdirectory if it did not already exist. This is no longer the case. You will now
need to explicitly create the appropriate type, like so:

this addType attachments

this edit attachment foo

It is possible that the standard directories attachments and offsiders (previously named
subdictionaries) will be created automatically when the offsider is first created. This will be
finalised before version 0.10.0 .

Atomic updates
append and so on do not do atomic updates (unlike their deprecated equivalents). If you want an atomic
update, you will need to create a temporary member, and then rename it once it is complete.

has doesn't recognise the same typename abbreviations as the other
actions

OffsiderAPI-0.9.1

6
has existed in earlier versions, and has not been modified. It does not (yet) use isType to work out
the full name of the type. It simply tries adding a terminal s. This will be fixed.

Methods

addType
Create a new type.

syntax:

addType fullType

where fullType is the full name of the type.

forEach
Perform an action on each member of a type.

syntax:

forEach type action arguments

where type is the name of the type (possibly contracted), action is an action to perform on each
member and arguments are the arguments to that action.

in
Perform a specified action to a type member.

syntax:

in type action member arguments

where type is the (abbreviated) name of the type, action is the specified action, member is the name
of the member and arguments are the arguments for the action.

NOTE: This method is merely a wrapper for the various action methods. It is provided as an
alternative syntax.

isAction
Determine if an action is recognised as a valid action.

syntax:

isAction action

Returns the name of the action if it is a valid action.

isMember
Look for a member amongst all types in this offsider.

syntax:

isMember member

OffsiderAPI-0.9.1

7
Returns a list of all types that contain the named member.

isType
Determine if a type exists for this offsider.

syntax:

isType type

where type is an abbreviated name for a type.

Returns the full name of the type if it matches uniquely.

listType
List all members of a type.

syntax:

listType fullType

where fullType is the full name of the type.

pathTo
Return the path to a given type or member.

Syntax:

pathTo type [member]

type is the abbreviated name of the type, and member is the name of a member

If member is not given, returns the filepath to the type otherwise returns the filepath to the member.

Unlike has, this will only check for the existence of type, not the existence of member.

removeType
Remove a type from this offsider. Also removes all the members for that type.

syntax:

removeType type

where type is the full name of the type.

renameType
Rename a type for this offsider.

syntax:

renameType name newName

where name is the full name of the type and newName is the full new name of the type.

Does nothing if the named type does not exist.

OffsiderAPI-0.9.1

8
It is an error if there is already a type called newName

to
Perform a specified action to a type member.

Syntax:

to fullType/member action arguments

or

to type member action arguments

where fullType is the full name of the type, type is the (contracted) name of the type, member is
the name of the member, action is the specified action, arguments are the arguments for the action.

NOTE: This method is merely a wrapper for the various action methods. It is provided as an
alternative syntax.

typeGroup
Set or get the group of a type.

Syntax:

typeGroup fullType [owner]

Where fullType is the full name of the type, and group is a UNIX group who will own the type.

If group is not given, return the current group, else set the group for the type's directory.

typeOwner
Set or get the owner of a type.

Syntax:

typeOwner fullType [owner]

Where fullType is the full name of the type, and owner is a UNIX user who will own the type.

If owner is not given, return the current owner, else set the owner.

typePermissions
Get or set the permission for a type.

Syntax:

typePermissions fullType [permissions]

Where fullType is the full name of the type, and permissions is a permission setting, as
understood by UNIX chmod.

If permissions is given, set the permissions of the type directory, otherwise returns the permissions,
as reported by UNIX ls -l.

types

OffsiderAPI-0.9.1

9
List all types for this offsider.

Syntax:

types

typeSummary
Output a summary of the specified type.

Syntax:

typeSummary type [contents | contents+]

type is the fullname of the type. If not given, the arguments default to

keys contents

If the keyword contents is given, then the contents of each member is displayed after the member
name, like so:

membername: contents

If the keyword contents+ is given, then the contents of each member is displayed, and for each line
after the first, the format

membername:+ line of content

is used.

If neither keyword is given, just the member names are displayed.

Actions
Each of the methods in this section implements an action which can be performed on a member of a type

addDirectory
Create a directory within a type.

Syntax:

addDirectory type name

where type is the (contracted) name of the type and name is the name of the new directory

addTypeOffsider
Create an offsider within a type.

Syntax:

addTypeOffsider type name [template]

where type is the (contracted) name of the type member is the name of the member

template is an existing offsider, (either the named executable or the base directory) If specified, the
new offsider will be a clone of template.

OffsiderAPI-0.9.1

10
append
Append to the value of type member from stdin or from a file.

Syntax:

append type member [file]

where type is the (contracted) name of the type, member is the name of the member and file is
the name of a file

If file is not given, will append from stdin.

If the member doesn't already exist, it will be created.

copy
Set the value of type member from the contents of a file.

Syntax:

copy type member file

where type is the (contracted) name of the type, member is the name of the member and file is
the name of a file.

If the member doesn't already exist, it will be created.

USAGE NOTE: The positions of the membername and filename may conflict with normal usage with
existing Unix cp, and other copy paradigms, especially when you consider the various syntactic
possiblities provided by the Offsider type framework. Just keep in mind that it is entirely consistent
with all of the rest of the Offsider Type framework.

edit
Edit a type member using a text editor.

Syntax:

edit type member [editor]

where type is the (contracted) name of the type, member is the name of the member to edit and
editor is the editor to use.

By default, the editor is vi, or the value of the $EDITOR environment variable.

If the member doesn't already exist, it will probably be created by the editor.

get
Get the value of type member.

Syntax:

get type member

where type is the (contracted) name of the type and member is the name of the member.

If the member doesn't exist, a null string will be returned.

OffsiderAPI-0.9.1

11
group
Get or set the group for a member of a type.

Syntax:

group type member [group]

where type is the (contracted) name of the type, member is the name of the member and group is
a UNIX user, who is to own the member.

If group is given, then sets the group for the member, otherwise, returns the current group

owner
Get or set the owner for a member of a type.

Syntax:

owner type member [owner]

where type is the (contracted) name of the type, member is the name of the member and owner is
a UNIX user, who is to own the member.

If owner is given, then sets the owner for the member, otherwise, returns the current owner

permissions
Get or set the permissions for a member of a type.

Syntax:

permissions type member [permission]

where type is the (contracted) name of the type, member is the name of the member and
permission is a permission specification, as understood by UNIX chmod.

If permission is given, then sets the permission for the member, otherwise, if the member exists,
returns the permissions as per UNIX ls -l.

pipe
Set the value of type member from stdin

Syntax:

pipe type member

where type is the (contracted) name of the type and member is the name of the member.

If the member doesn't already exist, it will be created.

prepend
Prepend to the value of type member from stdin or from a file.

Syntax:

prepend type member [file]

OffsiderAPI-0.9.1

12
where type is the (contracted) name of the type, member is the name of the member and file is
the name of a file.

If file is not given, will prepend from stdin.

If the member doesn't already exist, it will be created.

remove
Remove a member.

Syntax:

remove type member

where type is the (contracted) name of the type and member is the current name of the member.

rename
Rename a member.

Syntax:

rename type member newName

where type is the (contracted) name of the type member is the current name of the member newName
is the new name for the member

WARNING: Will over-write any existing member with newName

run
Execute a type member, if possible.

Syntax:

run type member arguments

where type is the (contracted) name of the type, member is the name of the member and arguments
are the arguments for the executable.

If the member doesn't exist, or is not executable, nothing happens.

send
Send a message to a type member.

syntax:

send type member message

where type is the (contracted) name of the type, member is the name of the member and message
is the message to send, and may contain blanks.

Will not send the message if the member is not a directory.

set
Set the value of type member.

OffsiderAPI-0.9.1

13
Syntax:

set type member value

where type is the (contracted) name of the type, member is the name of the member and value is
the value to set, and may contain blanks.

If the member doesn't already exist, it will be created.

setAppend
Append to the value of type member from the command line arguments.

syntax:

setAppend type member value

Where type is the (contracted) name of the type, member is the name of the member, and value is
the value to append to the current value. may contain blanks.

If the member doesn't already exist, it will be created.

x
Set the permission for a member to make it executable.

syntax:

x type member

where type is the (contracted) name of the type member is the name of the member

The permission used is a+x, as understood by UNIX chmod.

xcopy
Set the value of type member from the contents of a file. Make the resulting file executable.

Syntax:

xcopy type member file

where type is the (contracted) name of the type, member is the name of the member and file is
the name of a file.

If the member doesn't already exist, it will be created.

USAGE NOTE: The positions of the membername and filename may conflict with normal usage with
existing Unix cp, and other copy paradigms, especially when you consider the various syntactic
possiblities provided by the Offsider type framework. Just keep in mind that it is entirely consistent
with all of the rest of the Offsider Type framework.

xedit
Edit a type member using a text editor. Make the resulting file executable.

Syntax:

xedit type member [editor]

OffsiderAPI-0.9.1

14
where type is the (contracted) name of the type, member is the name of the member to edit and
editor is the editor to use.

By default, the editor is vi, or the value of the $EDITOR environment variable.

If the member doesn't already exist, it will probably be created by the editor.

xpipe
Set the value of type member from stdin. Make the resulting file executable.

Syntax:

xpipe type member

where type is the (contracted) name of the type and member is the name of the member

If the member doesn't already exist, it will be created.

Syntactic sugar for the Types framework
A variety of syntactic sugar has been implemented to go with new Type framework.

This provides a number of alternative ways to express the fact that you want to perform an action on
a member of a type.

The methods documented in this section implement the syntactic sugar.

Each has the syntax:

syntacticSugarMethod message

where message is the incoming message, which is being parsed for syntactic sugar.

Each method will output a string in the form:

methodName arguments

provided the incoming message is recognised by syntacticSugarMethod.

Normally, you would not use any of these methods explicitly. They are all called by the
parseMessage method, which is envoked by the offsider executable.

getSetSugar
Syntactic sugar for keys and attachments only

Message:

To return the value of a key or attachment:

member

To set the value of a key only:

member: value

Returns:

get keys member

OffsiderAPI-0.9.1

15
get attachments member

set keys member value

.. as appropriate

NOTE: will probably assume the member is a key, even if the key doesn't exist.

listTypeSugar
Syntactic sugar for listType

Message:

fullType

where fullType is the full name of the type.

returns

listType fullType

memberActionSugar
Syntactic sugar for a member and action

Message:

member action args

where member is the name of a member, action is the action to perform and args are the arguments
for that action. The type is not specified.

If any type contains a member with name member, then the type will be set to be the first type that
it is found in. So be careful!

returns

action fullType member args

offsiderSugar
Syntactic sugar for a member name, where the member is a directory.

Message:

member message

where member is the name of a member, which is a directory. The type is not specified.

If any type contains a member with name member, and the member is a directory, then the type will
be set to be the first type that it is found in. So be careful!

returns

send fullType member message

typeSugar
Syntactic sugar for a type.

OffsiderAPI-0.9.1

16
Message:

type member action arguments

where type is the (contracted) name of a type, member is the name of a member in that type, action
is the action to perform on that member and arguments are the arguments for that action.

returns

action fullType member arguments

Keys
A key is data that can be associated with an offsider. It is one way of specifying an offsider's state.

Each key has a name, and each key contains a value.

There is specific syntactic sugar to make it easier to get and set the value for a key:

Get the value for a key:

this keyName

Set the value for a key:

this keyName: key value

Almost identical to the concept of a key is the concept of an attachment. See the section on attachments
for more detail.

In practice you would use a key for storing data that consists of one or two lines of printable text, and
an attachment for anything else.

All of the methods documented here for Keys are deprecated as of version 0.9.0. Use methods
described in the section on Types instead.

appendToKey
Append data to a key using the contents of a named file, or stdin.

Syntax:

appendToKey key filename

or

stream | appendToKey key

where key is the name of the key.

filename is the file from which the extra data is to be copied.

stream represents a stream, for example cat file, or some other process that can generate data
for the key.

editKey
Edit a key using a text editor.

OffsiderAPI-0.9.1

17
Syntax:

editKey name [editor]

where name is the name of the key to edit, and editor is the editor to use.

By default, the editor is vi, or the value of the $EDITOR environment variable.

If the key doesn't already exist, it will be created.

getKey
Return the value for a key.

If the key doesn't exist, return an empty string.

Syntax:

getKey key

hasKey
Determine whether the offsider has a specified key.

Syntax:

hasKey key

If the key exists, return the full path to the key. Otherwise, return an empty string, and raise an error
condition.

keyPath
Return the path that a key would have whether or not it actually exists.

syntax:

keyPath key

where key is the name of the key.

keys
Return a list of all the keys in the offsider.

Syntax:

keys

pairs
Return a list of all the keys in the offsider, together with their values.

For each key, returns

keyName: keyValue

Notice that this output is the same format as the syntactic sugar for setting the value of a key.

OffsiderAPI-0.9.1

18
pipeKey
Set the value for a key from stdin.

If the key doesn't exist, create it.

syntax:

stream | pipeKey key

where key is the name of the key, and

stream is a process that generates the value for the key.

removeKey
Remove a key.

syntax:

removeKey key

If the key does not exist, then an error condition is raised.

setKey
Set the value for a key.

If the key doesn't exist, creates it.

syntax:

setKey key value

where key is the name of the key.

value is the value for the key and can contain spaces.

Methods
A method is executable code that an offsider is capable of executing. You send a message to the offsider,
the offsider responds by executing a method.

The methods documented in this section relate to listing and modifying the methods for a particular
offsider.

Clarification:
An offsider can execute methods that belong specifically to itself, and others that are external to it, but
which it can access. Unless otherwise specified, all of the methods documented in this section work on
methods that are owned specifically by the offsider.

Note:
Many of these methods will return paths to executables. This is dependent on the specific
implementation of the offsider framework, and is not something that would neccessarily be available

OffsiderAPI-0.9.1

19
in an alternative implementation. Therefore, those methods should be regarded as low-level tools that
effectively break the information-hiding principle of object-oriented programming.

The offsider framework will maintain the current implementation at least until Version 2.0.

All of the methods documented here for Methods are deprecated as of version 0.9.0. Use methods
described in the section on Types instead.

allMethods
List all methods that this offsider responds to

usage:

allMethods [fullpath]

If the keyword fullpath is used, then the full path to each method's executable is returned, otherwise
just the method names are returned.

Hint: You can pipe the result into column to get the list formatted into columns so it is easier to view
on a terminal.

catMethod
Return the contents of an offsider's method.

syntax:

catMethod name

Where name is the name of the method.

Will only work if the method belongs specifically to the offsider. Use hasMethod to determine this.

Very useful for viewing the content of methods that are implemented as a script.

editMethod
Edit a method using a text editor.

Syntax:

editMethod name [editor]

here name is the name of the method to edit, and editor is the editor to use.

By default, the editor is vi, or the value of the $EDITOR environment variable.

If the method doesn't already exist, it will be created.

editMethod is useful for editing methods that are implemented as scripts.

externalMethods
Provide a list of all methods that the offsider understands, which are not specifically owned by the
offsider.

syntax:

OffsiderAPI-0.9.1

20
externalMethods [fullPath]

If the keyword fullpath is used, then the full path to each method's executable is returned, otherwise
just the method names are returned.

hasMethod
Determine if the offsider contains a specific method. (This is not the same as determining whether an
offsider recognises a specific method - see isMethod in the section on messages)

Syntax:

hasMethod method

where method is the name of the method.

If the offsider contains the method, then returns the full path to the executable. Otherwise, returns an
empty string.

method
Create or modify an offsider method by copying a file, or stdin.

Syntax:

method name file

or

stream | method name

where name is the name of the method, and filename is the file from which the method executable
is to be copied.

stream represents a stream, for example cat file, or some other process that can generate the
contents of an executable.

The resulting method will be made executable using chmod.

methodPath
Print the paths to the offsider's methods, or a given method.

Syntax:

methodPath [name]

where name is the name of a method, and is optional.

If name is given, will return the full path to that executable. Otherwise will return the path to the
directory that contains all the offsider's executable methods.

NOTE: Will return a path even if the named method does not exist.

methods
Return a list of all the methods in the offsider.

usage:

OffsiderAPI-0.9.1

21
methods [fullpath]

If the keyword fullpath is used, then the full path to each method's executable is returned, otherwise
just the method names are returned.

removeMethod
Remove an offsider's method.

Syntax:

method name

where name is the name of the method to remove.

Attachments
An attachment is data that can be associated with an offsider. Functionally, an attachment is entirely
equivalent to a key. The only difference is that typically the values of keys are given when producing
a summary of an offsider (for example, using asText), whereas for an attachment, only the name is
given.

Therefor you can use keys and attachments more or less interchangably if you don't care about
presentation.

In practice you would use a key for storing data that consists of one or two lines of printable text, and
an attachment for anything else.

All of the methods documented here for Attachments are deprecated as of version 0.9.0. Use
methods described in the section on Types instead.

appendToAttachment
append data to an attachment using the contents of a named file, or stdin.

syntax:

appendToAttachment name filename

or:

stream | appendToAttachment name

attachment
Create or overwrite an attachment, using the contents of a named file, or stdin.

syntax:

attachment name filename

or

stream | attachment name

Creates the attachment atomically, meaning that there is no possibility of accessing a partially written
attachment.

OffsiderAPI-0.9.1

22
attachments
List the names of all attachments for this offsider

syntax:

attachments

editAttachment
Edit an attachment using a text editor

syntax:

editAttachment name [editor]

By default, the editor is vi, or the value of $EDITOR.

getAttachment
Get the contents of an attachment

syntax:

getAttachment name

hasAttachment
Determine whether an attachment exists

Syntax:

hasAttachment name

Returns the name of the attachment if it exists, otherwise, returns a null string and an error condition

removeAttachment
Remove an attachment.

syntax:

removeAttachment name

Creation
This section documents methods that are used to create an offsider.

Warning: It is likely that there will be changes to this API following a review prior to version 1.0

clone
Create a new offsider by copying everything from this one.

The new offsider is a complete deep copy of the current one, although the metadata in the var/
subdirectory is generated from scratch.

Syntax:

OffsiderAPI-0.9.1

23
clone [name [baseDirectory]]

where name is the name for the named executable, and baseDirectory is the base directory for
the new offsider.

To specify the base directory, where no named executable is to be created, use:

clone --noname baseDirectory

If no base directory is given, one is generated.

If either the named executable or the base directory already exists, then an error is generated and nothing
is created.

Returns the base directory of the newly created offsider.

create
Create a new offsider, and optionally a named executable.

Syntax:

create [name [baseDirectory]]

To specify the base directory, where no named executable is to be created, use:

create --noname baseDirectory

If name is specified, create a named executable with the given name, otherwise do not create a named
executable. If the name contains a path, then create the named executable at that location, otherwise use
a standard location (typically ~/bin).

If baseDirectory is specified, then build the offsider infrastructure there, otherwise create the
offsider at a standard location (typically under ~/.offsiders).

If either the base directory, or the named executable already exists, does nothing and generates an error.

Returns the base directory of the newly created offsider.

createStandard
Create a new offsider in a standard location. Also, create a named executable at a standard location.

syntax:

createStandard name

If you are root, the base directory is /usr/local/share/Offsider/offsiders/name
otherwise it is ~/.offsiders/name

If you are root, the named executable is /usr/local/bin/name else, it is ~/bin/name

If either the base directory, or the named executable already exists, does nothing and generates an error.

Returns the base directory

destroyCompletely
Remove all trace of an offsider, including the named executable.

OffsiderAPI-0.9.1

24
Syntax:

destroyCompletely

This method will definitely remove the base directory and all the infrastructure contained therein. It
will remove the named executable if it was created at the same time as the offsider, and has not been
moved to another location since then. If you created extra named executables manually, it will probably
not be aware of them.

makeExecutable
Create the contents of an executable which can send messages to an offsider.

The executable is a script, and the source code is written to stdout.

Syntax:

makeExecutable [baseDirectory]

baseDirectory is the base directory for an offsider. The executable will send messages to the
offsider at that base directory.

If baseDirectory is not given, it defaults to the base directory for this offsider.

Usage:

this makeExecutable [baseDirectory] > scriptName

chmod +x scriptName

makeExecutableForChild
Create the contents of an executable which can send messages to a child offsider.

The executable is a script, and the source code is written to stdout.

Syntax:

makeExecutableForChild relativePath

relativePath is a relative path from this offsider's base directory to the base directory for the child
offsider. The executable will send messages to the offsider at that base directory.

Example usage:

We have an offsider foo at /path/to/Foo. We also have an offsider at /path/to/Foo/
childDictionaries/Baz. We want to create an executable for the child offsider.

Create the named executable:

foo makeExecutableForChild childDictionaries/Baz > ~/bin/baz

chmod +x ~/bin/baz

Envoke a method bah on baz

baz bah

From within the method bah, send a message to foo (the parent of baz):

this parentDictionary message

OffsiderAPI-0.9.1

25
Messages

All interaction with an offsider is by means of messages. A message is a string of text which is sent to the
offsider. This is normally done by providing the message as the arguments to an executable, for example

offsider -b baseDirectory message

this message

namedExecutable message

In every case, the message is parsed by the offsider in order to determine which method needs to be
run, and what arguments need to be sent to that method.

All of the methods documented in this section have something to do with the process of parsing a
message and determining what action to take.

Remember, it is the object itself that parses the message, not some language engine.

[Version 0.9] Introduced a comprehensive set of new syntactic sugar to handle the new Types
framework. Those methods, and the syntactic sugar they implement, are documented in the section on
Types.

customSugar
This method is not implemented in the framework. However, if you implement this method for an
offsider, then parseMessage will run this method after other checks for syntactic sugar.

The syntax must be:

customSugar message

The method must return a string in the form:

knownMethod arguments

where knownMethod is the name of a method known to that offsider, and arguments are the
arguments to be passed to that method.

If the message is not recognised by overrideSugar then it must return an empty string, so that
offsider can continue its processing.

WARNING: If you implement this method for an offsider:

Only use syntax like this knownMethod arguments, rather than the more general this
message, to avoid infinite recursion. Be even more careful if isMethod has been over-ridden.

isMethod
Determine whether this offsider recognises the named method.

If so, return the full path to the executable that implements the method. Otherwise, an empty string is
returned.

syntax:

isMethod methodName

By default, looks for executables in the following order:

OffsiderAPI-0.9.1

26
baseDirectory/methods/methodName

offsider.methodName (as per the $PATH environment variable)

Dictionary.methodName (Deprecated. Will be removed in version 1.0)

This method can be overridden for any offsider, to change the way in which methods are found.

keySugar
This method is deprecated as of version 0.9.0, and is no longer used by offsider or
parseMessage.

Parse a message and convert it to a canonical form of

method arguments

Specifically, looks for messages in the form:

key (which converts to) getKey key

key: value (which converts to) setKey key value

Syntax:

keySugar message

If the message is in the appropriate form, then returns the canonical form:

method arguments

else, returns an empty string.

If getKey is implied for a key that doesn't exist, then an empty string is returned (so we can substitute
messageNotImplemented or similar.)

If getKey is implied, but more arguments are supplied, an Error is raised.

It can be seen that this method has a high probability of deciding that the message is in the correct form,
because it doesn't mind if the key doesn't already exist.

This method is called by parseMethod, only if the message was not already in the form method
arguments (using the test isMethod method).

WARNING: If you extend or over-ride this method for an offsider:

Only use syntax like this knownMethod arguments, rather than the more general this
message, to avoid infinite recursion. Be even more careful if isMethod has been over-ridden.

messageNotUnderstood
What to do when a message is not understood by this offsider.

The standard response (implemented here) is to do nothing.

Do not rely on this method to capture typos. There is a lot of scope for the default syntactic sugar
to swallow messages, even if the message doesn't actually match anything. This is especially true of
getSetSugar.

See offsider, and methods parseMessage and isMethod

OffsiderAPI-0.9.1

27
noMessage
What to do when an empty message is sent to an offsider.

The default action is to return the base directory for the offsider.

Note. noCommand is a deprecated name for this method.

NOP
No action is taken.

This method cannot be over-ridden. The response to this message is hard-coded into the offsider
executable.

overrideSugar
This method is not implemented in the framework. However, if you implement this method for an
offsider, then parseMessage will run this method before other checks for syntactic sugar.

The syntax must be:

overrideSugar message

The method must return a string in the form:

knownMethod arguments

where knownMethod is the name of a method known to that offsider, and arguments are the
arguments to be passed to that method.

If the message is not recognised by overrideSugar then it must return an empty string, so that
parseMessage can continue checking.

WARNING: If you implement this method for an offsider:

Only use syntax like this knownMethod arguments, rather than the more general this
message, to avoid infinite recursion. Be even more careful if isMethod has been over-ridden.

parseMessage
Parse a message and convert it to a canonical form of

method arguments

Includes the possibility of syntactic sugar.

syntax:

parseMessage [notMethod] message

where message is the incoming message.

If the keyword notMethod is specified, then will not check to determine whether the first token is
a method name.

returns a message in the form

method arguments

OffsiderAPI-0.9.1

28
NOTE: The offsider executable calls this method with the notMethod keyword specified, after it
has already checked to see if the first word is a known method name. This means that you can't override
parseMessage to hide the names of known methods.

WARNING: If you extend or over-ride this method for an offsider:

Only use syntax like this knownMethod arguments, rather than the more general this
message, to avoid infinite recursion. Be even more careful if isMethod has been over-ridden.

rawFind
This method is a special-purpose method, and is used by offsider to get a foot-hold into the operation
of a particular offsider.

By default, isMethod is a wrapper to rawFind, so they have the same functionality.

rawFind cannot be overridden, any attempt to do so will fail.

An application programmer would not normally have a reason to use rawFind. Use isMethod in
preference to rawFind unless you have studied the source-code to offsider in detail and understand
exactly what you are doing (and why). Do not be fooled by the similarity in functionality. The two
methods have very different reasons for existing.

Note. This method is absolutely critical to the correct functioning of the Offsider framework.

sugar
This method is deprecated as of version 0.9.0, and is no longer used by offsider or
parseMessage.

Parse a message and convert it to a canonical form of

method arguments

This is called by parseMethod, only if the message was not already in the form method
arguments (as determined by isMethod method.)

Specifically, looks for syntactic sugar other than the normal key and key: value stuff.

syntax:

sugar message

If the message is a recognised form of syntactic sugar, then returns a message in the form

method arguments

else, returns an empty string.

The default Offsider behaviour is to do nothing. Syntactic sugar to do with getting and setting keys is
handled seperately by the keySugar method.

WARNING: If you extend or over-ride this method:

Only use syntax like this knownMethod arguments, rather than the more general this
message, to avoid infinite recursion. Be even more careful if isMethod has been over-ridden.

which

OffsiderAPI-0.9.1

29
This method acts like the normal UNIX which command. It was neccessary to implement it as a
method due to intractible differences in the which command across different variants of UNIX.

Syntax:

which executable

Where executable is the name of an executable.

which will search through the directories listed in the $PATH environment variable, looking for an
executable named executable.

If found, it will return the full path to that executable.

If not found, it will return an empty string. (Not all versions of UNIX which do this).

Code Reusage
Code reusage is an important concept in object oriented programming, and is often listed as one of the
key strengths of the object oriented paradigm.

In an object-oriented application language, code reusage is typically (but not always!) implemented by
means of classes and inheritence.

This is not really an option in the offsider framework, due to the persistent and exposed nature of the
offsider's infrastructure. (It is possible to implement classes and inheritence, but they turn out to be very
problematic, and create as many difficulties as they solve).

Instead, the offsider framework provides quite different ways to reuse code. They are more in line with
existing Unix practices.

Basically, the methods documented in this section provide various ways to copy code into an offsider
from different sources.

Warning: The methods documented in this section may well change between now and version 1.0,
since we do not feel this is the best possible API for code-reusage in the offsider framework.

allFrom
Copy keys, methods or other information from another offsider.

allFrom will overwrite existing files, whereas moreFrom will not.

syntax:

allFrom offsider [type [recursive]]

offsider is either the base directory of the offsider, or its named executable.

type specifies the type of information to copy, eg methods, keys, etc.

type is in fact the name of a subdirectory within the source offsider.

type defaults to methods.

if all is specified for type, will copy everything except var/.

if recursive is given as a keyword, then the copy is recursive.

OffsiderAPI-0.9.1

30
installMemberDirTo
Copy files from one directory to another.

syntax:

installMemberDirTo sourceDirectory targetDirectory

sourceDirectory contains files which are the keys to be copied.

targetDirectory is the directory that the keys are put (normally baseDirectory/keys)

installMembersTo
copy data from a specification file into files in a specified offsider

syntax:

installMembersTo sourceFile targetDirectory

sourceFile contains lines in the form

key: value...

(may also contain empty lines, and comment lines starting with # , both of which are ignored)

targetDirectory is the directory that the keys are put (normally baseDirectory/keys)

installMethodsTo
Copy executables from one directory to another.

syntax:

installMethodsTo sourceDirectory targetDirectory

sourceDirectory is the directory that contains the methods to install

targetDirectory is the directory to install into (normally baseDirectory/methods)

moreFrom
Modify the offsider by copying methods and keys from another one.

Will only copy methods or keys that do not already exist. (Use allFrom if you want to overwrite
existing methods or keys)

syntax:

moreFrom offsider

offsider is either the base directory of an offsider, or its named executable.

upgradeFromSource
Upgrade an offsider from its source directory. The offsider must be set up before-hand, by setting
appropriate keys.

Syntax:

OffsiderAPI-0.9.1

31
upgradeFromSource

The source directory is specified in the offsider key sourceDirectory.

The upgrade is performed by the method upgradeMe

The arguments for upgradeMe is specified in the offsider key sourceUpgradeList.

upgradeMe
Upgrade an offsider's methods and keys from information in the current directory.

Methods are taken from a subdirectory methods/

Keys are taken from a file pairs and a subdirectory keys/

syntax:

upgradeMe [directoryList]

directoryList is a list of directories and keywords, the same as for method upgradeMeFrom

If not given, upgrade from pairs, keys and methods, using upgradeMeDefault.

Before copying any files, run ./pre.upgrade if it exists. After copying all files, run ./
post.upgrade if it exists.

upgradeMeDefault
Upgrade an offsider's methods and keys from information in the current directory.

Methods are taken from a subdirectory methods/

Keys are taken from a file pairs and a subdirectory keys/

Syntax:

upgradeMeDefault

This method is a wrapper for the methods installMembersTo, installMemberDirTo and
installMethodsTo. Refer to them for more detail.

upgradeMeFrom
Copy code or data from the current directory into the offsider, by listing the subdirectories to copy.

syntax:

upgradeMeFrom directoryList

where directoryList is a list of subdirectories and optional keywords.

For each directory in the list, the contents of that subdirectory is copied from the current directory to
the offsider infrastructure.

The following keywords are also recognised:

executable - from now on, ensure that all files copied are made executable.

regular - from now on, don't force files copied to be executable (this is the default).

OffsiderAPI-0.9.1

32
pairs - look for a file named pairs. Use it to create files in the keys/ directory, according to the
information in that file.

This method is a wrapper for the methods installMembersTo, installMethodsTo and
installMemberDirTo. Refer to them for more detail.

Child Offsiders
An offsider can have one or more children, which are themselves offsiders. These are called Child
Offsiders. For historical reasons, these are also called Child Dictionaries.

Typically, you would send a message to a child offsider by sending the message through its parent.

For example, if offsider Foo has a child offsider Baz, then you would send a message to Baz by going:

Foo Baz message for Baz

Child offsiders are implemented in such a way that it is completely contained within the parent offsider's
infrastructure. In addition, the parent can be moved within the filesystem, or archived using tar or
similar, without breaking the parent/child relationship or the ability to send a message to the child
through the parent.

NOTE: Most of the following methods will be deprecated soon. The following methods all assume that
the Type is called subdictionaries. In future, this is likely to change to offsiders, and many
of these methods will be deprecated for the various actions defined in the Type framework.

addChildDictionary
Create a new offsider, and implement it as a child of the current one.

Syntax:

addChildDictionary childName [offsider]

If offsider is given, (as either a baseDirectory, or a named executable), then the child is a clone of
that offsider. Otherwise the offsider is a default offsider, (effectively empty).

The new offsider infrastructure is placed within the current offsider infrastructure. This allows the
current offsider to be moved or tarred without breaking any links.

childDictionaries
List the names of all child dictionaries for this offsider.

Syntax:

childDictionaries

hasChildDictionary
Determine whether a child offsider exists

Syntax:

hasChildDictionary name

OffsiderAPI-0.9.1

33
Returns the absolute path to the child offsider, if it exists. otherwise, returns a null string and an error
condition

parentDictionary
Assuming this is a child offsider, send a message to the parent offsider.

syntax:

parentDictionary [message]

WARNING: No checks are done to determine whether this truly is the child of an offsider.

Miscellaneous
This section documents various miscellaneous methods that don't fit into any other section.

asText
Return a summary of an offsider. Includes the names and values of keys, and the names of all methods
and attachments.

syntax:

asText [all]

If the keyword all is used, the summary will include the names of all methods that the offsider
recognises, and the contents of the offsider's meta-data.

baseDirectory
Returns the base directory as a fully resolved absolute path.

Syntax:

baseDirectory

cli
Provide a simple command line interface, to allow the user to send a series of messages to the offsider.

Syntax:

cli [option list]

option list can contain any of the following, in any order:

prompt: string make string the prompt

prompt turn prompts on (this is the default, so it's not needed)

noprompt turn prompts off

echo echo each command before it is executed

noecho do not echo commands. (this is the default, so it's not needed)

Note: There does not seem to be any way to force the prompt to contain spaces.

OffsiderAPI-0.9.1

34
Usage (within a shell-script):

this cli noprompt noecho <<EOF

message1

message2

message3

EOF

Error
Generate an error condition.

- prints an error message to stderr

- prints an error number to stdout

- uses the same error number as an exit code, so exits with an error code.

Syntax:

Error [no-tree] messageKey [parameters]

where messageKey is a string that identifies the error message, and parameters are extra
parameters that are inserted into the error message, according to the specifications for that message.

Usage:

exit `this Error [no-tree] messageKey [parameters]`

By default, prints the entire process calling tree. If no-tree is specified, the calling tree is suppressed,
but the error message is still printed.

has
Determine whether the offsider has a particular type of member, with a particular name.

Syntax:

has type name

type is the type of member, for example key, method or attachment.

name is the name of the member.

Returns the full path to that member, if it exists. Returns an empty string if the member does not exist.

For example:

Test if the offsider has a key named foo:

this has key foo

Test if the offsider has a method named bah:

this has method bah

Note: Because of the way offsiders are implemented, you can also specify the plural form for type:

this has keys foo

OffsiderAPI-0.9.1

35
You cannot, however, specify more than one name.

Explanation: Each type is stored in a subdirectory named for that type, so for example all keys are
stored in a subdirectory called keys/.

This is why the plural form is also recognised. In fact, this method first searches for a subdirectory
having the same name as the type argument, and if it doesn't find it, it adds a terminal s to the type
argument and searches for a subdirectory with that name.

This method is an attempt to replace the various methods hasKey, hasMethod and so on with a
single, inclusive method. It also means that if you create new member types for custom offsiders, then
this method will still work on those new member types.

Id
Returns the unique identifier for this offsider.

Syntax:

Id

This identifier is generated when the offsider is created, and uniquely identifies this offsider, even if
it is a clone of another offsider.

Warning: A known bug means that child offsiders of a cloned offsider will inherite the same Id as the
corresponding children of the original offsider.

LICENCE
Returns licencing information.

The Offsider software is released under the terms of the GNU General Public License (GPL), version
3 or later.

metadata
Return the offsider's metadata

Syntax:

metadata

An offsider's metadata consists of the contents of the files in the var/ subdirectory of the offsider's
base directory.

not
Reverse the (logical) sense of a message.

Syntax:

not message

Like the shell, an offsider uses an empty string for false. Any other string is considered true.

This method first sends message to the current offsider, using

this message

OffsiderAPI-0.9.1

36
If an empty string results, it returns a non-empty string.

If a non-empty string results, it returns an empty string and exits with a non-zero return code.

Profiler
Write a message to a logfile, including a timestamp.

Syntax:

Profiler [message]

where message is some text.

The location of the logfile is determined by the environment variable $OFFSIDERPROFILETO. If not
set, it defaults to /usr/local/share/Offsider/Profiler.out

Note: The executable that implements this method (offsider.Profiler) is used by offsider
to do automated profiling. offsider has its own convention that enables the logfile to be analysed
by a special-purpose offsider called Profiler.

You are free to use this method, but please be aware that it may be in conflict with the normal profiling
operations.

offsider uses the environment $OFFSIDERPROFILE to determine whether to perform profiling.
If non-empty then offsider will produce profiling information.

Note: The Offsider framework comes with a dummy place-holder method, and an optional Profiler
package which needs to be installed separately.

To get true profiling, you need to install the optional package.

The Profiler offsider is documented separately. It has methods for analysing the logfile produced
by offsider.

pstree
Show the process tree, from the current process down to init.

Syntax:

pstree

shell
Execute shell commands within the context of the offsider.

syntax:

shell [shell command and arguments]

This method first makes the base directory the current working directory, then executes the shell
command with the arguments.

Be careful with wild-cards, escape characters, and other characters that have special meaning to the
shell. It is unlikely that they will survive the offsider processing stages, no matter how you quote them.

Use of this method is discouraged, because it provides a temptation to break the object-oriented principle
of information hiding.

OffsiderAPI-0.9.1

37
If you find that you are using this method repeatedly to do the same task, you should consider writing
a method to wrap the usage of shell. At least that will provide a more object-oriented interface for
the same functionality.

You should also look again at the methods provided by the framework. Maybe there is already a method
that does what you want.

You should also review why you are resorting to the shell method. Are you thinking in the offsider
paradigm or the UNIX shell paradigm? In other words, are you thinking of the offsider as an object,
or as a directory?

toBaseDirectory
Takes either a named executable or the base directory for an offsider.

Returns the base directory.

Syntax:

toBaseDirectory [namedExecutable]

or

toBaseDirectory [baseDirectory]

This is a utility method. Sometimes it is convenient to specify an offsider by giving the named
executable, at other times the base directory is more convenient. This method allows either form to be
used.

version
Returns a string that identifies the specific version of the installed Offsider framework software.

Syntax:

version

Be aware that this method might be over-ridden for specific offsiders, especially if you have downloaded
special-purpose offsiders as separate packages.

The executable offsider.version will return the version of the Offsider framework.

(20100614 18:56:28) This page was produced using rsml. Source file was OffsiderAPI-0.9.1

The online version can be viewed at: http://offsider.sourceforge.net/

