OffsiderAPI-0.9.1

1

API referencefor O f sider-0.9. 1

The framework

overview

The O f si der framework is implemented as a collection of executables, which together provide a
novel and powerful paradigm for building systems, from simple to extremely complex.

The framework allows the programmer to build systems which respond as though they were objects.
Such asystemiscalled an offsider. In fact, an offsider is an object, and you interact with it by sending

it messages.

Theframework containsasingle high-level executable, of f si der , which providesthe mechanism for
sending messages to offsiders. (It can even send a message without an offsider being there to receive
the message. Thisis how offsiders are created in the first place.)

By default, a newly created offsider will respond to a large number of methods. These are al of the
methods that are provided by the framework itself. It is these methods that are documented below.

Once an offsider has been created, the programmer is free to override the methods that it responds to,
or create new methods, without modifying any of the methods provided by the framework.

To understand the offsider framework, you need to understand the following concepts:

The base directory

Each offsider isfully contained within asingle directory within the file system. Thisdirectory isknown
as the base directory. This directory specifies the offsider completely and uniquely. Without it, the
framework does not know where to send the message.

The infrastructure of an offsider

Whenwetalk of an offsider'sinfrastructure, we are simply referring to the contents of the base directory.
The infrastructure completely determines the functionality, and the state, of that offsider. (Ignoring, of
course, the default functionality provided by the framework).

A named executable

A named executable is a convenience provided for the programmer. It is just a wrapper for the
of f si der executable. It simplifiesthe task of sending a message to aparticular offsider by providing
a unique executable that will send messages to that offsider, and no other.

For example, if we have an offsider with a base directory / pat h/ t o/ Foo, and it has a named
executable ~/ bi n/ f 0o, then the following are equivalent:

of fsider -b /path/to/Foo nessage

OffsiderAPI-0.9.1

2

foo nmessage

The named executable is easier to type, and easier to remember.
Normally the named executable is specified and created at the same time that the offsider is created.
For example:

of fsider create foo /path/to/Foo

Once you have a named executable, you don't ever have to know or care where the base directory is. A
common way to create a new offsider is to specify only the named executable, and let the framework
come up with the base directory:

of fsider create foo

Next, we describe the executable of f si der , anditsdiast hi s.

of f si der
of f si der will send amessage to an offsider.
The syntax is:
offsider [-b baseDirectory] [nmessage]
where
baseDi r ect ory isthe base directory of the offsider to receive the message.

If the baseDirectory is not specified, then of f si der will look to see if the environment variable
$BASEDI RECTORY has been set. If it has, then it will get the base directory from there.

If no base directory is specified at all (using either of these methods), then the message will still be
sent, but it will have no target. Whether this results in an error is completely up to the method being
envoked. For example, the method cr eat e does not require an offsider to receive the message, and
will not generate an error. Many other methods do require an offsider to receive the message, and will
generate an error.

of f si der aso has some debugging modes that allow you to see what methods are being called, and
also to profile the execution to see where the timeis being spent. Refer to the man page for more detail
(man of f si der).

this

t hi s isjust anaternativenamefor of f si der . Nothingintheframework distinguishes between these
two names. It isjust that t hi s makes more sense when used within a method definition.

Typical usageis:
this nessage
which is equivalent to:

of f si der -b $BASEDI RECTORY nessage

provided $BASEDI RECTCRY is set. Within a method definition, it is always safe to assume that
$BASEDI RECTORY is set, since the framework ensures that this has been done.

OffsiderAPI-0.9.1

3
Usage

This APl documentation documents methods. The method is invoked by sending a message to an
offsider.

For illustration purposes, suppose we have an offsider with basedirectory / pat h/ t o/ Foo, and named
executable f 00. We want to envoke a method baz with argumentsa b c.

The message to be sent to the offsider is:

baz a b c

From the command line, we can send the message using:

offsider -b /path/to/Foo baz a b ¢
or

foo baz a b c

From within a method envoked on this offsider, we can use;

this baz a b c
In the documentation that follows, we would document the syntax for this method as follows:
syntax:

baz argunents

Is an offsider passive or active?

Throughout this documentation, | will talk about offsiders as though they were dynamic, active entities.
So, for example | will say things like you send a message to an offsider and the offsider responds to
the message.

Thisis an easy way to conceptualise what is happening at the high level, but it isreally afase picture
of what is happening behind the scenes.

Infact, the offsider isapurely passivething. It isnothing more than arepository for dataand executable
code. The active component is actually the offsider framework, and in particular the of f si der
executable.

The of f si der executable is what takes the message, parses it and takes appropriate action. It does
this on behalf of the offsider, by referring to the offsider, by taking note of what executables and data
are contained within the offsider. It delegates as appropriate to executabl es that implement the required
functionality (methods) on behalf of the offsider.

Keep thisin mind as you read through the documentation.

Some wrappers that you might find useful:

her e

her e will send a message to the current working directory, as though it were an offsider.

Syntax:

OffsiderAPI-0.9.1

4

here message

If the current working directory containsasubdirectory Her e/ , themessagewill be sent to that directory
instead.

nmy

ny will send a message to the user's home directory, as though it were an offsider.
Syntax:

ny nessage

If the user's home directory contains a subdirectory My/ , the message will be sent to that directory
instead.

Types in the Offsider framework

Types were introduced in version 0.9.0 . Before that, the various types (keys, methods, attachments
etc) were handled each in their own particular way by methods written specifically for that type.

The types framework is a set of methods that can be used with any type, including types created by
the user.

The advantages of this new approach is that we now have a consistent generic API that works exactly
the same across all types. In addition, the user can easily add new types as required.

In addition, a couple of wrapper methods (i n and t 0), plus a new set of syntactic sugar, provides
different ways of coding the actions on type members. This meansyou can choose the syntax that seems
most intuitive and readable for any given context.

Concepts

type

A type is a collection of data or executables stored within the offsider infrastructure. Each typeis a
separate collection.

Implementation detail: The type is implemented as a subdirectory of the offsider's base directory. The
Type framework also provides mechanisms for placing directories and offsidersinto such acollection,
so the Type framework isin effect just an abstraction of normal file and directory operations.

Note especially that, unlike most application programming languages, the types are specific to each
offsider. They are not defined at the framework level. (Although there are conventions that are used by
the default framework. In particular met hods and to a lesser extent keys play an important role in
the logic of the Offsider framework.)

full type name

The full name of the type is the name of the directory that holds the collection.

For example keys isthe full name of the directory that holds al the offsider's keys.

abbreviated type name

OffsiderAPI-0.9.1

5

You can often refer to a collection by providing an abbreviated name, for example key and k can
usually be used as names for the type with full name keys.

The name can be used provided it provides no ambiguity. In otherwords if you have types f oobah
and f oozbal |, then f oob isvalid for f oobah and f ooz isvalid for f oozbal | , but f 0o is not
valid as atype name.

member

A typeisacollection, amember isan element of such a collection.

A member can be ordinary data, an executable, or another collection, such as a directory or an offsider.
Implementation detail: Thetypeisimplemented asadirectory, and each member isjust afileor directory
in that directory.

action

An action is something that is done to a member. For example get thevalue, or r enane it.

Differences with earlier versions. Pitfalls

Deprecated methods

All of the existing methods (eg get Key, pi peToAt t achnment , net hods) are still available, but
they are deprecated. They will aimost certainly not be available in version 1.0.

New syntactic sugar

Some methods are now replaced by an equivalent form of syntactic sugar. For example, the message
keys usedto beimplemented asamethod. The same message isnow handled by syntactic sugar, which
convertsthe messagetol i st Type keys. Theend result isthe same.

The need to create types explicitly

Previously, methods like at t achnent , addChi | dDi cti onary and so on, would automatically
create the appropriate subdirectory if it did not already exist. Thisis no longer the case. Y ou will now
need to explicitly create the appropriate type, like so:

this addType attachnents
this edit attachment foo

It is possible that the standard directories at t achnment s and of f si ders (previousy named
subdi cti onari es) will be created automatically when the offsider is first created. This will be
finalised before version 0.10.0 .

Atomic updates

append and so on do not do atomic updates (unlike their deprecated equivalents). If you want an atomic
update, you will need to create atemporary member, and then rename it once it is compl ete.

has doesn't recognise the same typename abbreviations as the other
actions

OffsiderAPI-0.9.1

6

has existed in earlier versions, and has not been modified. It does not (yet) usei sType to work out
the full name of the type. It simply tries adding aterminal s. Thiswill be fixed.

Methods

addType
Create anew type.
syntax:

addType full Type
wheref ul | Type isthe full name of the type.

forEach
Perform an action on each member of atype.
syntax:

forEach type action argunents

where t ype is the name of the type (possibly contracted), act i on is an action to perform on each
member and ar gunent s are the arguments to that action.

in
Perform a specified action to a type member.
syntax:

in type action nmenber argunents

wheret ype isthe (abbreviated) name of thetype, act i on isthe specified action, menber isthename
of the member and ar gunent s are the arguments for the action.

NOTE: This method is merely a wrapper for the various act i on methods. It is provided as an
aternative syntax.

iIsAction
Determineif an action is recognised as avalid action.
syntax:

i sAction action
Returns the name of the action if it isavalid action.

isMember
Look for amember amongst all typesin this offsider.

syntax:
i sMenber nenber

OffsiderAPI-0.9.1

Z

Returns alist of all types that contain the named member.

iIsType
Determine if atype existsfor this offsider.
syntax:

i sType type
wheret ype isan abbreviated name for atype.

Returns the full name of the type if it matches uniquely.

listType
List all members of atype.
syntax:

listType full Type
wheref ul | Type isthe full name of the type.

pathTo

Return the path to a given type or member.
Syntax:

pat hTo type [nenber]
t ype isthe abbreviated name of the type, and menber isthe name of a member

If menber isnot given, returns the filepath to the type otherwise returns the filepath to the member.

Unlike has, thiswill only check for the existence of type, not the existence of member.

removeType
Remove atype from this offsider. Also removes al the members for that type.

syntax:

renoveType type
wheret ype isthe full name of the type.

renameType
Rename atype for this offsider.

syntax:

renaneType nane newNane
where nane isthe full name of the type and newNane is the full new name of the type.

Does nothing if the named type does not exist.

OffsiderAPI-0.9.1

8

Itisan error if thereis aready atype caled newNane

to
Perform a specified action to atype member.
Syntax:

to full Type/ menber action argunents
or

to type menber action arguments

wheref ul | Type isthefull name of thetype, t ype isthe (contracted) name of the type, menber is
the name of themember, act i on isthe specified action, ar gunent s arethe argumentsfor the action.

NOTE: This method is merely a wrapper for the various acti on methods. It is provided as an
alternative syntax.

typeGroup
Set or get the group of atype.
Syntax:
typeG oup full Type [owner]
Wheref ul | Type isthefull name of the type, and gr oup isa UNI X group who will own the type.

If gr oup isnot given, return the current group, else set the group for the type's directory.

typeOwner
Set or get the owner of atype.
Syntax:
typeOmer full Type [owner]
Wheref ul | Type isthefull name of the type, and owner isaUNIX user who will own the type.

If owner isnot given, return the current owner, else set the owner.

typePermissions
Get or set the permission for atype.
Syntax:

typePerni ssions full Type [pernissions]

Where f ul | Type is the full name of the type, and per m ssi ons is a permission setting, as
understood by UNI X chnod.

If per m ssi ons isgiven, set the permissions of the type directory, otherwise returnsthe permissions,
asreportedby UNI X |'s -1.

types

OffsiderAPI-0.9.1

9

List all typesfor this offsider.

Syntax:
types

typeSummary
Output asummary of the specified type.
Syntax:

typeSummary type [contents | contents+]

t ype isthe fullname of the type. If not given, the arguments default to

keys contents

If the keyword cont ent s is given, then the contents of each member is displayed after the member
name, like so:

menber nane: contents

If the keyword cont ent s+ isgiven, then the contents of each member is displayed, and for each line
after the first, the format

menber nane: + | i ne of content
isused.

If neither keyword is given, just the member names are displayed.

Actions

Each of the methodsin this section implements an action which can be performed on amember of atype

addDirectory
Create adirectory within atype.

Syntax:
addDi rectory type nane

wheret ype isthe (contracted) name of the type and nane is the name of the new directory

addTypeOffsider
Create an offsider within atype.

Syntax:
addTypeO fsider type name [tenplate]

wheret ype isthe (contracted) name of the type menber isthe name of the member

t enpl at e isan existing offsider, (either the named executable or the base directory) If specified, the
new offsider will beacloneof t enpl at e.

OffsiderAPI-0.9.1

10
append

Append to the value of type member from stdin or from afile.
Syntax:
append type nenber [file]

where t ype is the (contracted) name of the type, menber isthe name of the member and fi | e is
the name of afile

If fileisnotgiven, will append fromst di n.

If the member doesn't already exist, it will be created.

copy

Set the value of type member from the contents of afile.
Syntax:
copy type nenber file

where t ype is the (contracted) name of the type, nenber isthe name of the member andfi | e is
the name of afile.

If the member doesn't already exist, it will be created.

USAGE NOTE: The positions of the membername and filename may conflict with normal usage with
existing Uni x cp, and other copy paradigms, especially when you consider the various syntactic

possiblities provided by the Offsider type framework. Just keep in mind that it is entirely consistent
with all of the rest of the Offsider Type framework.
edit
Edit atype member using atext editor.
Syntax:
edit type nmenber [editor]

where t ype is the (contracted) name of the type, menber is the name of the member to edit and
edi t or istheeditor to use.

By default, the editor isvi , or the value of the $EDI TOR environment variable.
If the member doesn't already exist, it will probably be created by the editor.

get
Get the value of type member.
Syntax:
get type nenber
wheret ype isthe (contracted) name of the type and menber isthe name of the member.

If the member doesn't exist, anull string will be returned.

OffsiderAPI1-0.9.1
11
group
Get or set the group for a member of atype.
Syntax:
group type nmenber [group]

wheret ype is the (contracted) name of the type, menber isthe name of the member and gr oup is
aUNI X user, who isto own the member.

If gr oup isgiven, then sets the group for the member, otherwise, returns the current group

owner
Get or set the owner for amember of atype.
Syntax:

owner type nmenber [owner]

wheret ype isthe (contracted) name of the type, menber isthe name of the member and owner is
aUNI X user, who is to own the member.

If owner isgiven, then sets the owner for the member, otherwise, returns the current owner

permissions
Get or set the permissions for amember of atype.
Syntax:
perm ssions type nmenber [perm ssion]

where t ype is the (contracted) name of the type, menber is the name of the member and
per m ssi on isapermission specification, as understood by UNI X chnod.

If per mi ssi on is given, then sets the permission for the member, otherwise, if the member exists,
returns the permissionsasper UNI X |'s -1 .

pipe
Set the value of type member from st di n
Syntax:
pi pe type nenber
wheret ype isthe (contracted) name of the type and menber isthe name of the member.

If the member doesn't already exist, it will be created.
prepend

Prepend to the value of type member from stdin or from afile.
Syntax:

prepend type nmenber [file]

OffsiderAPI-0.9.1

12

where t ype is the (contracted) name of the type, menber isthe name of the member andfi | e is
the name of afile.

If fil eisnotgiven, will prepend from st di n.

If the member doesn't already exist, it will be created.

remove

Remove a member.
Syntax:

renove type nenber

wheret ype isthe (contracted) name of the type and menber isthe current name of the member.

rename

Rename a member.

Syntax:

renane type nmenber newNane

wheret ype isthe (contracted) name of thetypemenber isthe current name of the member newNarne
is the new name for the member

WARNING: Will over-write any existing member with newNane

run

Execute atype member, if possible.
Syntax:

run type nmenber arguments

wheret ype isthe (contracted) name of thetype, nenber isthe name of the member and ar gunent s
are the arguments for the executable.

If the member doesn't exist, or is not executable, nothing happens.

send
Send a message to a type member.

syntax:

send type nmenber nessage

wheret ype isthe (contracted) name of the type, menber isthe name of the member and nessage
is the message to send, and may contain blanks.

Will not send the message if the member is not adirectory.

set
Set the value of type member.

OffsiderAPI-0.9.1

13

Syntax:

set type nmenber val ue

wheret ype is the (contracted) name of the type, menber isthe name of the member and val ue is
the value to set, and may contain blanks.

If the member doesn't already exist, it will be created.

setAppend
Append to the value of type member from the command line arguments.
syntax:

set Append type nenber val ue

Wheret ype isthe (contracted) name of the type, menber isthe name of the member, and val ue is
the value to append to the current value. may contain blanks.

If the member doesn't already exist, it will be created.

X
Set the permission for amember to make it executable.
syntax:

X type nenber

wheret ype isthe (contracted) name of the type menber isthe name of the member

The permission used is a+x, as understood by UNI X chnod.

Xcopy
Set the value of type member from the contents of afile. Make the resulting file executable.
Syntax:

xcopy type nenber file

where t ype is the (contracted) name of the type, menber isthe name of the member andfil e is
the name of afile.

If the member doesn't already exist, it will be created.

USAGE NOTE: The positions of the membername and filename may conflict with normal usage with
existing Uni x cp, and other copy paradigms, especially when you consider the various syntactic
possiblities provided by the Offsider type framework. Just keep in mind that it is entirely consistent
with all of the rest of the Offsider Type framework.
xedit

Edit atype member using atext editor. Make the resulting file executable.

Syntax:

xedit type nenber [editor]

OffsiderAPI-0.9.1

14

where t ype is the (contracted) name of the type, menber is the name of the member to edit and
edi t or istheeditor to use.

By default, the editor isvi , or the value of the $EDI TOR environment variable.

If the member doesn't already exist, it will probably be created by the editor.

Xpipe
Set the value of type member from st di n. Make the resulting file executable.
Syntax:
Xpi pe type nenber
wheret ype isthe (contracted) name of the type and menber isthe name of the member

If the member doesn't already exist, it will be created.

Syntactic sugar for the Types framework
A variety of syntactic sugar has been implemented to go with new Type framework.

This provides a number of alternative ways to express the fact that you want to perform an action on
amember of atype.

The methods documented in this section implement the syntactic sugar.
Each has the syntax:

synt acti cSugar Met hod nessage
where nessage isthe incoming message, which is being parsed for syntactic sugar.

Each method will output a string in the form:

met hodNane ar gunent s

provided the incoming message is recognised by synt act i cSugar Met hod.
Normally, you would not use any of these methods explicitly. They are al caled by the
par seMessage method, which is envoked by the of f si der executable.

getSetSugar

Syntactic sugar for keys and attachments only
Message:

To return the value of a key or attachment:

menber

To set the value of akey only:

menber: val ue
Returns:

get keys nenber

OffsiderAPI-0.9.1

15

get attachnments nenber
set keys nenber val ue

.. s appropriate

NOTE: will probably assume the member isakey, even if the key doesn't exist.

listTypeSugar
Syntactic sugar for | i st Type
Message:

full Type

wheref ul | Type isthe full name of the type.

returns

listType full Type

memberActionSugar
Syntactic sugar for amember and action
Message:

menber action args

wheremenber isthe name of amember, act i on istheactionto performand ar gs arethe arguments
for that action. The typeis not specified.

If any type contains a member with name nenber , then the type will be set to be the first type that
itisfound in. So be careful!

returns

action full Type nenber args

offsiderSugar
Syntactic sugar for amember name, where the member is adirectory.
Message:
menber nessage
where member is the name of a member, which is adirectory. The type is not specified.

If any type contains a member with name menber , and the member is a directory, then the type will
be set to be the first typethat it isfound in. So be car eful!

returns

send full Type nenber nessage

typeSugar
Syntactic sugar for atype.

OffsiderAPI-0.9.1

16

Message:
type nenber action argunents

wheret ype isthe (contracted) name of atype, menber isthe nameof amember inthat type, act i on
isthe action to perform on that member and ar gunent s are the arguments for that action.

returns

action full Type nenber argunents

Keys
A key isdatathat can be associated with an offsider. It is one way of specifying an offsider's state.
Each key has a name, and each key contains a value.
There is specific syntactic sugar to make it easier to get and set the value for a key:
Get the value for akey:

this keyName
Set the value for akey:

this keyNane: key val ue

Almost identical to the concept of akey isthe concept of an attachment. See the section on attachments
for more detail.

In practice you would use a key for storing data that consists of one or two lines of printable text, and
an attachment for anything else.

All of the methods documented here for Keys are deprecated as of version 0.9.0. Use methods
described in the section on Typesinstead.

appendToKey

Append data to akey using the contents of a named file, or st di n.
Syntax:

appendToKey key fil enane
or

stream | appendToKey key
where key isthe name of the key.
fil ename isthefile from which the extra dataisto be copied.
st r eamrepresents a stream, for example cat fi | e, or some other process that can generate data

for the key.

editkey
Edit akey using atext editor.

OffsiderAPI-0.9.1

17
Syntax:

edi tKey nane [editor]
where nane isthe name of the key to edit, and edi t or isthe editor to use.

By default, the editor isvi , or the value of the $EDI TOR environment variable.
If the key doesn't already exist, it will be created.

getKey
Return the value for akey.

If the key doesn't exist, return an empty string.

Syntax:
get Key key

hasKey
Determine whether the offsider has a specified key.

Syntax:

hasKey key

If the key exists, return the full path to the key. Otherwise, return an empty string, and raise an error
condition.

keyPath
Return the path that a key would have whether or not it actually exists.

syntax:

keyPat h key
where key isthe name of the key.

keys
Return alist of al the keysin the offsider.

Syntax:
keys

pairs
Return alist of al the keysin the offsider, together with their values.
For each key, returns

keyNare: keyVal ue
Notice that this output is the same format as the syntactic sugar for setting the value of akey.

OffsiderAPI1-0.9.1
| 18
pipeKey
Set the value for akey from st di n.
If the key doesn't exist, createit.

syntax:

stream | pipeKey key
where key isthe name of the key, and

st r eamisaprocess that generates the value for the key.
removeKey

Remove a key.

syntax:

renoveKey key

If the key does not exist, then an error condition is raised.
setKey

Set the value for akey.

If the key doesn't exist, createsit.
syntax:

set Key key val ue

where key isthe name of the key.

val ue isthe valuefor the key and can contain spaces.

Methods

A method is executabl e code that an offsider is capabl e of executing. Y ou send amessageto the offsider,
the offsider responds by executing a method.

The methods documented in this section relate to listing and modifying the methods for a particular
offsider.

Clarification:

An offsider can execute methods that belong specifically to itself, and others that are external to it, but

which it can access. Unless otherwise specified, al of the methods documented in this section work on
methods that are owned specifically by the offsider.

Note:

Many of these methods will return paths to executables. This is dependent on the specific
implementation of the offsider framework, and is not something that would neccessarily be available

OffsiderAPI-0.9.1

19

in an alternative implementation. Therefore, those methods should be regarded as low-level tools that
effectively break the information-hiding principle of object-oriented programming.

The offsider framework will maintain the current implementation at least until Version 2.0.

All of the methods documented herefor Methods are deprecated as of version 0.9.0. Use methods
described in the section on Typesinstead.

allMethods
List all methods that this offsider responds to
usage:

all Methods [fullpath]

If thekeywordf ul | pat h isused, then thefull path to each method's executableis returned, otherwise
just the method names are returned.

Hint: You can pipe the result into col unm to get the list formatted into columns so it is easier to view
on aterminal.

catMethod

Return the contents of an offsider's method.
syntax:

cat Met hod nane
Where nane is the name of the method.

Will only work if the method belongs specifically to the offsider. Use hasMet hod to determine this.

Very useful for viewing the content of methods that are implemented as a script.

editMethod
Edit amethod using atext editor.

Syntax:
edi t Met hod nane [editor]
here nane isthe name of the method to edit, and edi t or isthe editor to use.

By default, the editor isvi , or the value of the $EDI TOR environment variable.
If the method doesn't already exist, it will be created.
edi t Met hod isuseful for editing methods that are implemented as scripts.

externalMethods

Provide a list of all methods that the offsider understands, which are not specifically owned by the
offsider.

syntax:

OffsiderAPI-0.9.1

20

external Methods [full Path]

If thekeyword f ul | pat h isused, then thefull path to each method's executableis returned, otherwise
just the method names are returned.

hasMethod

Determine if the offsider contains a specific method. (Thisis not the same as determining whether an
offsider recognises a specific method - seei sMet hod in the section on messages)

Syntax:
hasMet hod net hod

where met hod isthe name of the method.
If the offsider contains the method, then returns the full path to the executable. Otherwise, returns an
empty string.

method
Create or modify an offsider method by copying afile, or st di n.

Syntax:

met hod nane file

or

stream | nethod nane

where nane is the name of the method, and f i | enarme isthe file from which the method executable
isto be copied.

st r eamrepresents a stream, for example cat fi | e, or some other process that can generate the
contents of an executable.

The resulting method will be made executable using chnod.

methodPath
Print the paths to the offsider's methods, or a given method.

Syntax:

met hodPat h [name]

where nane is the name of a method, and is optional.

If nane is given, will return the full path to that executable. Otherwise will return the path to the
directory that contains all the offsider's executable methods.

NOTE: Will return a path even if the named method does not exist.

methods
Return alist of all the methods in the offsider.

usage:

OffsiderAPI-0.9.1

21

methods [fullpath]

If thekeyword f ul | pat h isused, then thefull path to each method's executableis returned, otherwise
just the method names are returned.

removeMethod

Remove an offsider's method.
Syntax:

met hod nane

where nane isthe name of the method to remove.

Attachments

An attachment is data that can be associated with an offsider. Functionally, an attachment is entirely
equivalent to akey. The only difference is that typically the values of keys are given when producing
asummary of an offsider (for example, using as Text), whereas for an attachment, only the name is
given.

Therefor you can use keys and attachments more or less interchangably if you don't care about
presentation.

In practice you would use a key for storing data that consists of one or two lines of printable text, and
an attachment for anything else.

All of the methods documented here for Attachments are deprecated as of version 0.9.0. Use
methods described in the section on Typesinstead.

appendToAttachment

append data to an attachment using the contents of a named file, or st di n.
syntax:

appendToAttachnment nane fil enane
or:

stream | appendToAttachnment nane

attachment
Create or overwrite an attachment, using the contents of anamed file, or st di n.
syntax:

attachnent nanme fil enane
or

stream | attachnment nane

Creates the attachment atomically, meaning that there is no possibility of accessing a partially written
attachment.

OffsiderAPI-0.9.1

22

attachments

List the names of all attachments for this offsider
syntax:

attachnents

editAttachment

Edit an attachment using atext editor
syntax:

editAttachnment name [editor]
By default, the editor isvi , or the value of $EDI TOR.

getAttachment

Get the contents of an attachment
syntax:

get Att achnent nane

hasAttachment

Determine whether an attachment exists

Syntax:
hasAtt achment nane

Returns the name of the attachment if it exists, otherwise, returns anull string and an error condition

removeAttachment

Remove an attachment.
syntax:

renoveAtt achnent nane

Creation
This section documents methods that are used to create an offsider.

Warning: Itislikely that there will be changesto this API following areview prior to version 1.0

clone

Create anew offsider by copying everything from this one.

The new offsider is a complete deep copy of the current one, athough the metadata in the var/
subdirectory is generated from scratch.

Syntax:

OffsiderAPI-0.9.1

23

clone [name [baseDirectory]]

where nane is the name for the named executable, and baseDi r ect or y is the base directory for
the new offsider.

To specify the base directory, where no named executable is to be created, use:

cl one --nonane baseDirectory

If no base directory is given, oneis generated.

If either the named executabl e or the base directory already exists, then an error isgenerated and nothing
is created.

Returns the base directory of the newly created offsider.

create

Create anew offsider, and optionally a named executable.
Syntax:

create [name [baseDirectory]]

To specify the base directory, where no named executable is to be created, use:

create --noname baseDirectory

If name is specified, create a named executable with the given name, otherwise do not create a named
executable. If the name contains a path, then create the named executable at that location, otherwise use
astandard location (typically ~/ bi n).

If baseDirectory is specified, then build the offsider infrastructure there, otherwise create the
offsider at a standard location (typically under ~/ . of f si der s).

If either the base directory, or the named executable already exists, does nothing and generates an error.

Returns the base directory of the newly created offsider.

createStandard
Create anew offsider in a standard location. Also, create a named executable at a standard location.
syntax:

creat eSt andard nane

If you are r oot , the base directory is / usr/| ocal / share/ O f si der/ of f si der s/ nane
otherwiseitis~/ . of f si der s/ name

If you arer oot , the named executableis/ usr/ | ocal / bi n/ nane élsg, itis~/ bi n/ name
If either the base directory, or the named executable already exists, does nothing and generates an error.

Returns the base directory

destroyCompletely

Remove all trace of an offsider, including the named executable.

OffsiderAPI-0.9.1

24
Syntax:

destroyConpl etel y

This method will definitely remove the base directory and all the infrastructure contained therein. It
will remove the named executable if it was created at the same time as the offsider, and has not been
moved to another location since then. If you created extranamed executables manually, it will probably
not be aware of them.

makeExecutable

Create the contents of an executable which can send messages to an offsider.
The executableis a script, and the source code is written to st dout .

Syntax:

makeExecut abl e [baseDirectory]

baseDi rect ory is the base directory for an offsider. The executable will send messages to the
offsider at that base directory.

If baseDi r ect ory isnot given, it defaults to the base directory for this offsider.
Usage:
this makeExecutable [baseDirectory] > scriptName

chnod +x scri pt Nane

makeExecutableForChild

Create the contents of an executable which can send messages to a child offsider.
The executableis a script, and the source code is writtento st dout .
Syntax:

makeExecut abl eForChil d rel ati vePath

rel ati vePat h isarelative path from this offsider's base directory to the base directory for the child
offsider. The executable will send messagesto the offsider at that base directory.

Example usage:

We have an offsider f oo at / pat h/ t o/ Foo. We aso have an offsider at / pat h/t o/ Foo/
chi | dDi cti onari es/ Baz. Wewant to create an executable for the child offsider.

Create the named executable;

f oo makeExecut abl eFor Child chil dDi ctionaries/Baz > ~/bin/baz
chnod +x ~/ bin/baz

Envoke amethod bah on baz
baz bah

From within the method bah, send amessageto f oo (the parent of baz):

this parentDictionary nessage

OffsiderAPI-0.9.1

25
Messages

All interaction with an offsider isby means of messages. A messageisastring of text whichissent tothe
offsider. Thisisnormally done by providing the message asthe argumentsto an executable, for example

of fsider -b baseDirectory nessage
this nessage
nanmedExecut abl e nessage

In every case, the message is parsed by the offsider in order to determine which method needs to be
run, and what arguments need to be sent to that method.

All of the methods documented in this section have something to do with the process of parsing a
message and determining what action to take.

Remember, it isthe object itself that parses the message, not some language engine.

[Version 0.9] Introduced a comprehensive set of new syntactic sugar to handle the new Types
framework. Those methods, and the syntactic sugar they implement, are documented in the section on
Types.

customSugar

This method is not implemented in the framework. However, if you implement this method for an
offsider, then par seMessage will run this method after other checks for syntactic sugar.

The syntax must be:

cust onSugar nmessage

The method must return a string in the form:

knownMet hod ar gunent s

where knownMet hod is the name of a method known to that offsider, and ar gunent s are the
arguments to be passed to that method.

If the message is not recognised by over ri deSugar then it must return an empty string, so that
of f si der can continue its processing.

WARNING: If you implement this method for an offsider:

Only use syntax liket hi s knownMet hod ar gunent s, rather than the more general t hi s
nmessage, to avoid infinite recursion. Be even more careful if i sMet hod has been over-ridden.

isMethod

Determine whether this offsider recogni ses the named method.

If so, return the full path to the executable that implements the method. Otherwise, an empty string is
returned.

syntax:

i sMet hod met hodNane
By default, looks for executablesin the following order:

OffsiderAPI-0.9.1

26

baseDi rect ory/ net hods/ met hodNamne
of f si der . met hodNane (as per the $PATH environment variable)
Di cti onary. met hodNane (Deprecated. Will be removed in version 1.0)

Thismethod can be overridden for any offsider, to change the way in which methods ar e found.

keySugar

This method is deprecated as of version 0.9.0, and is no longer used by of f si der or
par seMessage.

Parse a message and convert it to a canonical form of

nmet hod argunents
Specifically, looks for messages in the form:

key (which convertsto) get Key key
key: val ue (which convertsto) set Key key val ue
Syntax:

keySugar nessage

If the message isin the appropriate form, then returns the canonical form:

met hod ar gunents

else, returns an empty string.

If get Key isimplied for akey that doesn't exist, then an empty string is returned (so we can substitute
nessageNot | mpl enent ed or similar.)

If get Key isimplied, but more arguments are supplied, an Error is raised.

It can be seen that this method has a high probability of deciding that the messageisin the correct form,
because it doesn't mind if the key doesn't already exist.

This method is called by par seMet hod, only if the message was nhot already in the form method
arguments (using thetest i sMet hod net hod).

WARNING: If you extend or over-ride this method for an offsider:
Only use syntax like t hi s knownMet hod ar gunent s, rather than the more general t hi s

nmessage, to avoid infinite recursion. Be even more careful if i sMet hod has been over-ridden.

messageNotUnderstood
What to do when amessage is not understood by this offsider.

The standard response (implemented here) isto do nothing.

Do not rely on this method to capture typos. There is a lot of scope for the default syntactic sugar
to swallow messages, even if the message doesn't actually match anything. This is especialy true of
get Set Sugar .

See of f si der, and methods par seMessage andi sMet hod

OffsiderAPI-0.9.1

27

noMessage

What to do when an empty message is sent to an offsider.
The default action is to return the base directory for the offsider.

Note. noComrand is adeprecated name for this method.

NOP

No action is taken.

This method cannot be over-ridden. The response to this message is hard-coded into the of f si der
executable.
overrideSugar

This method is not implemented in the framework. However, if you implement this method for an
offsider, then par seMessage will run this method befor e other checks for syntactic sugar.

The syntax must be:

overri deSugar nessage

The method must return a string in the form:

knownMet hod ar gunent s

where knownMet hod is the name of a method known to that offsider, and ar gunent s are the
arguments to be passed to that method.

If the message is not recognised by over ri deSugar then it must return an empty string, so that
par seMessage can continue checking.

WARNING: If you implement this method for an offsider:
Only use syntax like t his knownMet hod ar gunents, rather than the more genera t hi s

nmessage, to avoid infinite recursion. Be even more careful if i sMet hod has been over-ridden.

parseMessage

Parse a message and convert it to a canonical form of

met hod ar gunent s

Includes the possibility of syntactic sugar.
syntax:

parseMessage [not Method] nessage

where message isthe incoming message.

If the keyword not Met hod is specified, then will not check to determine whether the first token is
amethod name.

returns amessage in the form

met hod ar gunents

OffsiderAPI-0.9.1

28

NOTE: Theof f si der executable callsthismethod with thenot Met hod keyword specified, after it
has already checked to seeif the first word is aknown method name. This meansthat you can't override
par seMessage to hide the names of known methods.

WARNING: If you extend or over-ride this method for an offsider:
Only use syntax like t hi s knownMet hod ar gunent s, rather than the more general t hi s

nmessage, to avoid infinite recursion. Be even more careful if i sMet hod has been over-ridden.

rawFind

Thismethod isaspecial-purpose method, and isused by of f si der to get afoot-holdinto the operation
of aparticular offsider.

By default, i sMet hod isawrapper to r awFi nd, so they have the same functionality.
r awFi nd cannot be overridden, any attempt to do so will fail.

An application programmer would not normally have a reason to use r awFi nd. Usei sMet hod in
preferencetor awFi nd unlessyou have studied the source-codeto of f si der indetail and understand
exactly what you are doing (and why). Do not be fooled by the similarity in functionality. The two
methods have very different reasons for existing.

Note. This method is absolutely critical to the correct functioning of the Offsider framework.

sugar

This method is deprecated as of version 0.9.0, and is no longer used by of f si der or
par seMessage.

Parse a message and convert it to a canonical form of

met hod argunents

This is caled by par seMet hod, only if the message was not aready in the form et hod
ar gunment s (asdetermined by i sMet hod et hod.)

Specifically, looks for syntactic sugar other than the normal key and key: val ue stuff.
syntax:

sugar nessage

If the message is arecognised form of syntactic sugar, then returns a message in the form

met hod ar gunents

else, returns an empty string.

The default Offsider behaviour is to do nothing. Syntactic sugar to do with getting and setting keysis
handled seperately by the key Sugar method.

WARNING: If you extend or over-ride this method:

Only use syntax liket hi s knownMet hod ar gunents, rather than the more general t hi s
nmessage, to avoid infinite recursion. Be even more careful if i sMet hod has been over-ridden.

which

OffsiderAPI-0.9.1

This method acts like the normal UNI X whi ch command. It was neccessary to implement it as a
method due to intractible differences in the whi ch command across different variants of UNI X.

Syntax:

whi ch execut abl e

Where execut abl e isthe name of an executable,

whi ch will search through the directories listed in the $PATH environment variable, looking for an
executable named executable.

If found, it will return the full path to that executable.

If not found, it will return an empty string. (Not al versions of UNI X whi ch do this).

Code Reusage

Code reusage is an important concept in object oriented programming, and is often listed as one of the
key strengths of the object oriented paradigm.

In an object-oriented application language, code reusage is typically (but not always!) implemented by
means of classes and inheritence.

Thisis not really an option in the offsider framework, due to the persistent and exposed nature of the
offsider'sinfrastructure. (It is possible to implement classes and inheritence, but they turn out to be very
problematic, and create as many difficulties as they solve).

Instead, the offsider framework provides quite different waysto reuse code. They are morein line with
existing Uni x practices.

Basically, the methods documented in this section provide various ways to copy code into an offsider
from different sources.

Warning: The methods documented in this section may well change between now and version 1.0,
since we do not fedl thisis the best possible API for code-reusage in the offsider framework.

allFrom

Copy keys, methods or other information from another offsider.
al | Fr omwill overwrite existing files, whereas mor eFr omwill not.
syntax:

all Fromoffsider [type [recursive]]

of f si der iseither the base directory of the offsider, or its named executable.
t ype specifies the type of information to copy, eg et hods, keys, etc.

t ype isin fact the name of a subdirectory within the source offsider.

t ype defaultsto net hods.

if al | isspecified fort ype, will copy everything except var / .

if recur si ve isgiven as akeyword, then the copy isrecursive.

29

OffsiderAPI-0.9.1

30

installMemberDirTo

Copy filesfrom one directory to another.
syntax:

i nstal | MenberDi r To sourceDirectory targetDirectory

sour ceDi r ect or y contains files which are the keys to be copied.

t ar get Di r ect ory isthedirectory that the keys are put (normally baseDi r ect or y/ keys)

installMembersTo

copy data from a specification fileinto filesin a specified offsider
syntax:

i nstal | MenmbersTo sourceFile targetDirectory

sour ceFi | e containslinesinthe form

key: val ue...

(may also contain empty lines, and comment lines starting with # , both of which are ignored)

t ar get Di r ect ory isthedirectory that the keys are put (normally baseDi r ect or y/ keys)

installMethodsTo

Copy executables from one directory to another.
syntax:

i nstall Met hodsTo sourceDirectory targetDirectory

sour ceDi r ect ory isthedirectory that contains the methods to install

target Di rect ory isthedirectory to install into (normally baseDi r ect or y/ met hods)

moreFrom
Modify the offsider by copying methods and keys from another one.

Will only copy methods or keys that do not already exist. (Use al | Fr omif you want to overwrite
existing methods or keys)

syntax:

nmor eFrom of f si der

of f si der iseither the base directory of an offsider, or its named executable.

upgradeFromSource

Upgrade an offsider from its source directory. The offsider must be set up before-hand, by setting
appropriate keys.

Syntax:

OffsiderAPI-0.9.1

31

upgr adeFr onBour ce

The source directory is specified in the offsider key sour ceDi r ect ory.
The upgrade is performed by the method upgr adeMe
The arguments for upgr adeMe is specified in the offsider key sour ceUpgr adeLi st.

upgradeMe

Upgrade an offsider's methods and keys from information in the current directory.
Methods are taken from a subdirectory net hods/

Keys are taken from afile pai r s and a subdirectory keys/

syntax:

upgradeMe [directorylList]
directoryList isalist of directories and keywords, the same as for method upgr adeMeFr om
If not given, upgrade from pairs, keys and methods, using upgr adeMeDef aul t .
Before copying any files, run ./ pre. upgrade if it exists. After copying al files, run ./

post . upgr ade if it exists.

upgradeMeDefault

Upgrade an offsider's methods and keys from information in the current directory.
Methods are taken from a subdirectory net hods/

Keys are taken from afile pai r s and a subdirectory keys/

Syntax:

upgr adeMeDef aul t

This method is a wrapper for the methods i nst al | Menber sTo, i nstal | Menber Di r To and
i nst al | Met hodsTo. Refer to them for more detail.

upgradeMeFrom

Copy code or data from the current directory into the offsider, by listing the subdirectories to copy.
syntax:

upgr adeMeFrom di rect oryLi st

wheredi rect or yLi st isalist of subdirectories and optional keywords.

For each directory in the list, the contents of that subdirectory is copied from the current directory to
the offsider infrastructure.

The following keywords are al so recognised:
execut abl e - from now on, ensure that all files copied are made executable.

regul ar - from now on, don't force files copied to be executable (this is the default).

OffsiderAPI-0.9.1

32

pai rs - look for afile named pai r s. Useit to create filesin the keys/ directory, according to the
information in that file.

This method is a wrapper for the methods i nst al | Menber sTo, i nstal | Met hodsTo and
i nst al | Menber Di r To. Refer to them for more detail.

Child Offsiders

An offsider can have one or more children, which are themselves offsiders. These are caled Child
Offsiders. For historical reasons, these are also called Child Dictionaries.

Typically, you would send a message to a child offsider by sending the message through its parent.
For example, if offsider Foo hasachild offsider Baz, then you would send amessage to Baz by going:

Foo Baz nessage for Baz

Child offsidersareimplemented in such away that it is completely contained within the parent offsider's
infrastructure. In addition, the parent can be moved within the filesystem, or archived using t ar or
similar, without breaking the parent/child relationship or the ability to send a message to the child
through the parent.

NOTE: Most of the following methods will be deprecated soon. The following methods all assume that
the Typeiscalled subdi cti onari es. Infuture, thisislikely to changeto of f si der s, and many
of these methods will be deprecated for the various actions defined in the Type framework.
addChildDictionary
Create anew offsider, and implement it as a child of the current one.
Syntax:

addChi Il dDi ctionary chil dName [of fsider]

If of f si der isgiven, (as either a baseDirectory, or a named executable), then the child is a clone of
that offsider. Otherwise the offsider is a default offsider, (effectively empty).

The new offsider infrastructure is placed within the current offsider infrastructure. This alows the
current offsider to be moved or t ar red without breaking any links.

childDictionaries

List the names of all child dictionaries for this offsider.

Syntax:

chil dDi ctionari es

hasChildDictionary

Determine whether a child offsider exists

Syntax:

hasChi | dDi cti onary nane

OffsiderAPI-0.9.1

33

Returns the absolute path to the child offsider, if it exists. otherwise, returns a null string and an error
condition

parentDictionary
Assuming thisisachild offsider, send a message to the parent offsider.

syntax:

parentDictionary [nessage]

WARNING: No checks are done to determine whether this truly is the child of an offsider.

Miscellaneous

This section documents various miscellaneous methods that don't fit into any other section.

asText

Return a summary of an offsider. Includes the names and values of keys, and the names of all methods
and attachments.

syntax:

asText [all]

If the keyword al | is used, the summary will include the names of all methods that the offsider
recognises, and the contents of the offsider's meta-data.

baseDirectory
Returns the base directory as a fully resolved absolute path.

Syntax:

baseDirectory

cli
Provide a simple command line interface, to allow the user to send a series of messages to the offsider.
Syntax:
cli [option list]
option list can contain any of the following, in any order:
pronpt: string makestring theprompt
pr onpt turn prompts on (thisisthe default, so it's not needed)
nopr onpt turn prompts off
echo echo each command before it is executed
noecho do not echo commands. (thisis the default, so it's not needed)

Note: There does not seem to be any way to force the prompt to contain spaces.

OffsiderAPI-0.9.1

34

Usage (within a shell-script):
this cli nopronpt noecho <<EOF
nessagel
nmessage?2
nmessage3
ECF

Error

Generate an error condition.

- prints an error message to st der r

- prints an error number to st dout

- uses the same error number as an exit code, so exits with an error code.
Syntax:

Error [no-tree] nmessageKey [paraneters]

where nessageKey is a string that identifies the error message, and par anmet er s are extra
parametersthat are inserted into the error message, according to the specifications for that message.

Usage:
exit “this Error [no-tree] nessageKey [paraneters |-

By default, printsthe entire processcalling tree. If no- t r ee isspecified, the calling tree is suppressed,
but the error message is still printed.

has
Determine whether the offsider has a particular type of member, with a particular name.

Syntax:
has type name
t ype isthetype of member, for examplekey, net hod or at t achnent .
narme isthe name of the member.
Returnsthe full path to that member, if it exists. Returns an empty string if the member does not exist.
For example:
Test if the offsider has a key named f 0o0:

this has key foo
Test if the offsider has a method named bah:

this has net hod bah
Note: Because of the way offsiders are implemented, you can also specify the plural form for t ype:

this has keys foo

OffsiderAPI-0.9.1

35

Y ou cannot, however, specify more than one name.

Explanation: Each type is stored in a subdirectory named for that type, so for example al keys are
stored in asubdirectory called keys/ .

This is why the plural form is also recognised. In fact, this method first searches for a subdirectory
having the same name asthet ype argument, and if it doesn't find it, it adds aterminal s tothet ype
argument and searches for a subdirectory with that name.

This method is an attempt to replace the various methods hasKey, hasMet hod and so on with a
single, inclusive method. It also meansthat if you create new member types for custom offsiders, then
this method will still work on those new member types.

Id

Returns the unique identifier for this offsider.

Syntax:
Id

This identifier is generated when the offsider is created, and uniquely identifies this offsider, even if
it isaclone of another offsider.

Warning: A known bug means that child offsiders of acloned offsider will inherite the same Id as the
corresponding children of the original offsider.

LICENCE

Returns licencing information.
The Offsider software is released under the terms of the GNU General Public License (GPL), version
3or later.

metadata
Return the offsider's metadata

Syntax:

met adat a

An offsider's metadata consists of the contents of the filesin the var/ subdirectory of the offsider's
base directory.

not

Reverse the (logical) sense of a message.

Syntax:

not nmessage

Like the shell, an offsider uses an empty string for false. Any other string is considered true.
This method first sends message to the current offsider, using

this nessage

OffsiderAPI-0.9.1

36

If an empty string results, it returns a non-empty string.

If anon-empty string results, it returns an empty string and exits with a non-zero return code.

Profiler
Write a message to alogfile, including a timestamp.
Syntax:

Profiler [nessage]

where nessage is sometext.

Thelocation of the logfile is determined by the environment variable $OFFSI DERPROFI LETO. If not
set, it defaultsto/ usr/ | ocal / share/ O f si der/ Profil er. out

Note: The executable that implements this method (of f si der. Profi | er) isused by of f si der
to do automated profiling. of f si der has its own convention that enables the logfile to be analysed
by a special-purpose offsider called Pr of i | er .

Y ou are free to use this method, but please be aware that it may be in conflict with the normal profiling
operations.

of f si der uses the environment $OFFSI DERPROFI LE to determine whether to perform profiling.
If non-empty then of f si der will produce profiling information.

Note: The Offsider framework comes with adummy place-holder method, and an optional Pr of i | er
package which needs to be installed separately.

To get true profiling, you need to install the optional package.
The Prof i | er offsider is documented separately. It has methods for analysing the logfile produced
by of f si der.

pstree

Show the process tree, from the current processdown toi ni t .
Syntax:

pstree

shell
Execute shell commands within the context of the offsider.
syntax:

shell [shell command and argunents]

This method first makes the base directory the current working directory, then executes the shell
command with the arguments.

Be careful with wild-cards, escape characters, and other characters that have special meaning to the
shell. Itisunlikely that they will survive the offsider processing stages, no matter how you quote them.

Useof thismethod is discouraged, becauseit provides atemptation to break the object-oriented principle
of information hiding.

OffsiderAPI-0.9.1

37

If you find that you are using this method repeatedly to do the same task, you should consider writing
amethod to wrap the usage of shel | . At least that will provide a more object-oriented interface for
the same functionality.

Y ou should also look again at the methods provided by the framework. Maybe thereis already amethod
that does what you want.

Y ou should also review why you are resorting to the shel | method. Are you thinking in the offsider
paradigm or the UNIX shell paradigm? In other words, are you thinking of the offsider as an object,
or asadirectory?

toBaseDirectory

Takes either a named executable or the base directory for an offsider.

Returns the base directory.

Syntax:
toBaseDi rectory [nanmedExecut abl e]

or

toBaseDirectory [baseDirectory]

This is a utility method. Sometimes it is convenient to specify an offsider by giving the named
executable, at other times the base directory is more convenient. This method allows either form to be
used.

version
Returns a string that identifies the specific version of the installed Offsider framework software.
Syntax:

ver si on

Be awarethat this method might be over-ridden for specific offsiders, especially if you have downloaded
special-purpose offsiders as separate packages.

The executable of f si der . ver si on will return the version of the Offsider framework.

(20100614 18:56:28) This page was produced using r s . Source file was O f si der APl -0. 9. 1
The online version can be viewed at: htt p:// of f si der. sour cef orge. net/

