developmentSuggestions

1

Some strategies for offsider devel opment

Offsider development is quite different from application development, and has its own unique
difficulties and pitfalls. Over the last year or so, | have developed many offsiders and offsider-based
systems. Based on this experience, | have come up with afew strategiesthat | have found useful. | share
them with you here.

Please keep in mind that there are amost certainly other ways of approaching offsider development.
Thisisjust one way.

Development

Basic approach

The basic approach | take is that | aways keep my development code completely seperate from my
operational offsiders.

Thisinevitably leads to duplication of code (multiple copies of scripts, for example), but that is okay.

The advantage of keeping the development code seperate is that | can easily recreate the offsider if it
somehow becomes corrupted. It aso makes maintenance much simpler, especialy in situations where
the offsider isaclone of, or is otherwise based on, some other offsider(s).

Thisapproachisindirect contrast to, for example, the Quick-start tutorial, where you devel op an offsider
by editing the methods directly.

How | organise my development code

The development code is in a completely seperate directory, usually in a completely different part of
the file-system. You can decide for yourself how you are going to do backups and version contral. |
simply make time-stamped tar archives when | deem it appropriate.

Within this directory, | typically have the following:

READVE

Thisisfor me. It is usually the first file | create. | write in it my thoughts about what the offsider is
supposed to do, why | need it, and initial thoughts about how | intend to implement the functionality,
and what messages the offsider will support (ie, itsinterface).

| NSTALL

This is an executable, usually a shell script. It will create the offsider if neccessary, based on the
development code in this directory. Otherwise, it will upgrade the offsider with the latest changes. If
the offsider requires code from other offsiders, it will also refresh that code as well. This means that if
those other offsiders change, then this one will reflect those changes. The bottom lineis that this script

developmentSuggestions

2

should always do the right thing, no matter what the situation. Obviously, | need to think carefully about
how this script is written, but once written, it becomes an invaluable tool for keeping the production
offsider completely up-to-date in all circumstances.

nmet hods/

Thisisadirectory. Within this directory are all the methods that the offsider will implement. Y ou will
recall that f oo upgr adeMe will automatically copy methods from this directory. This is what the
| NSTALL script does. Thisisaso what | do to just upgrade the latest method changes, without doing
acomplete INSTALL (which can be quite complex for really complex offsiders).

keys/ and pairs

In my experience, these are less likely to be required. Some offsiders, however, make use of a very
specific set of keys, and it is sometimes useful to pre-load them with default settings (even if they are
empty).

upgr adeMe can create keys, and place values in them. Two mechanisms are available, and both will
happen by default.

Y ou can place individual filesin asubdirectory called keys/ .
In addition, you can create afile called pai r s. Within thisfile, put lines of the form:

keynane: value for that key

(To help with documentation and maintenance, blank lines and comments, which are lines starting with
the character # can be used, and will beignored.)

Be aware, however, that upgr adeMe will over-write the values for any keys upgraded in this manner.
This can be a problem when upgrading existing offsiders that are being used in production.

The solution | useisto provide methods called saveKeys andr est or eKeys.

saveKeys does:

this pairs | this attachnent savedKeys
rest or eKeys does
this get Attachnment savedKeys | this cli nopronpt noecho

Thel NSTALL script will runsaveKeys before each instalation if the offsider already exists, and will
runr est or eKeys at the end.

In thisway, any new keyswill get written to the offsider, whereas existing keyswill be restored to their
existing values.

In addition, | can run either of saveKeys or r est or eKeys by hand as| seefit.

Other
This depends on how complex your offsider is, and how you want to work.

If my offsider has child offsiders, | generally create seperate subdirectories for each child offsider.
Sometimes | will have all these subdirectories together in a subdirectory called chi | dOf f si der s or
similar. Thel NSTALL script will cd into the appropriate subdirectory, and then do (for example) f 0o
bah upgr adeMe to upgrade child offsider bah of offsider foo.

developmentSuggestions

3

Often | will provide each of the subdirectorieswithitsown | NSTALL script, whichthemain | NSTALL
script then calls. This means that | can run the | NSTALL script that is in the subdirectory that | am
currently in, and it will do the appropriate thing for the code I am currently working on. | can also use
f oo bah upgradeMe to provide running upgrades of methods that | am modifying.

After doing lots of changes, | will generally run the top level | NSTALL script again just to make sure,
in case | have missed anything.

If the functionality of my offsider has more than one well-defined area, | will sometimes use seperate
subdirectories for the different functional areas. For example, | might seperate data retrieval from
reporting from cgi-interfaces. Thisis amatter of personal taste.

Useful tools and methods

The offsider framework provides a number of useful methods that can be used in the | NSTALL script,
(or by hand). Understand these methods, and set up your development directory structure to make use
of them. The methods most likely are:

creat eSt andard

Will make sure that an offsider existsin a standard location, creating it if neccessary.

creat e, cl one

Will create an offsider from scratch (cr eat €), or make a clone of an existing one (cl one). Unlike
cr eat eSt andar d, both of these methods will fail if the offsider already exists. Put the command
inside an i f test. (t oBaseDi rect ory can be useful for testing whether an offsider exists. Pipe
stderr to/ dev/ nul |').

upgr adeMe, and friends

These methods are specifically designed for copying executables and data from the current directory to
an offsider. In particular, upgr adeMe is very easy to use, but quite flexible. By default, it will copy
methods and keys if they are present. This method will also recognise (and run) pr e. upgr ade and
post . upgr ade scripts, if they are present in the current directory.

al | From

This method will copy all the methods (or other material, like keys or attachments), from one offsider
to another. Thisis useful if your offsider is based on another one, and you want your | NSTALL script
to always upgrade the latest changes. Obvioudy, you should upgrade from other offsiders before you
upgrade any methods specific to this offsider, in case methods for this offsider override methods from
the other ones.

Thereisalso amethod called nor eFr om Thisis not of any particular use for doing code upgrades.

Testing and Debugging

One of the advantages of having seperate development and production code is that you can do quick
and dirty changesto your production code (to put in traces and so on), knowing that you can undo those
changes simply by running the | NSTALL script. It may sound counter-intuitive (or even dangerous!)

developmentSuggestions

4

to be putting tracesinto so-called "production” code, but it works. (If theretruly isa production system,
you would be upgrading from your development code into atest offsider anyway.)

Obviously, the development directory is also agood place to put test suites and so on.

Templates

Templates are a concept that crops up in offsiders, and can influence how you set up your development
work.

The offsider framework doesn't have a default concept of class or inheritance. Instead, we use the
concept of cloning. Thus you sometimes create offsiders which are never intended for production use,
but are essential for setting up production offsiders. A good exampleisWeav e, which can befound at its
SourceForgeProject Page (http://weavedb. sourceforge. net/) .Wave implements
anavigatable object database, and so can be used to store data. However, you would never actually use
Weav e to storedata. Instead, you use W av e to create clones, and then use those clonesto storethe data.

Therefor, from a usage point of view, templates have a similar purpose to classes in a typical object-
oriented programming language. (However, from the framework's point of view, thereis absolutely no
difference between an offsider that is intended to be used as atemplate, and an offsider that isnot.)

Thereason that templates can influence your development i sthat sometimesyou will develop atemplate,
whichisthen usedto create your production offsiders. Thusyour devel opment codewill contain material
for you template, and your | NSTALL script may well upgrade your production offsiders in addition
to your template. Thiswill become obvious as you become more familiar with the framework in more
complex situations.

To use object-oriented application development as a comparison, the way it is often done is that you
define a class, and then use the class to create objects that derive functionality from the class. There
is, however, one big difference between offsiders and object-oriented applications. With application
code, the objects are all create from scratch whenever the application isrun. With offsiders, objects stay
created, and will even survive rebooting the machine. Thus you need to put more thought into what
happens to the offsiders as development of the templates progresses (a problem that doesn't even arise
for object-oriented application devel opment).

Documentation

Last (ironically enough!), but not least, isall that user and system documentation, web pages and so on.
Obviousdly, the development directory is agood place to put al that stuff.

In conclusion

Since offsiders persist permanently, you need to think differently about the development process. |
have elaborated some of my thoughts, based on experience, about how you might approach offsider
development.

Y ou might have different thoughts, or experiences. If so, | would like to hear from you. Please contact
me if you have anything to add, your input is valued and may well help other devel opers.

Cheers, Glen. gl enel g. smi t h@mai | . comFeb 2010

developmentSuggestions

5

(20100211 20:08:14) This page was produced using r sm . Source file was devel opnent Suggesti ons
The online version can be viewed at: htt p:// of f si der. sour cef orge. net/

